Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Chiral-phonon-activated spin Seebeck effect

Abstract

Utilization of the interaction between spin and heat currents is the central focus of the field of spin caloritronics. Chiral phonons possessing angular momentum arising from the broken symmetry of a non-magnetic material create the potential for generating spin currents at room temperature in response to a thermal gradient, precluding the need for a ferromagnetic contact. Here we show the observation of spin currents generated by chiral phonons in a two-dimensional layered hybrid organic–inorganic perovskite implanted with chiral cations when subjected to a thermal gradient. The generated spin current shows a strong dependence on the chirality of the film and external magnetic fields, of which the coefficient is orders of magnitude larger than that produced by the reported spin Seebeck effect. Our findings indicate the potential of chiral phonons for spin caloritronic applications and offer a new route towards spin generation in the absence of magnetic materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Spin Seebeck effect, chiral-phonon-activated spin Seebeck effect (CPASS) and experimental setup.
Fig. 2: Transient spin current generation.
Fig. 3: CPASS-driven STT.
Fig. 4: Power, modulation and magnetic field dependence.

Similar content being viewed by others

Data availability

Source data are provided with this paper. The source data for the Supplementary Information are available from the corresponding author upon reasonable request.

References

  1. Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).

    Article  CAS  Google Scholar 

  2. Hoffmann, A. & Bader, S. D. Opportunities at the frontiers of spintronics. Phys. Rev. Appl. 4, 047001 (2015).

    Article  Google Scholar 

  3. Uchida, K. et al. Observation of the spin Seebeck effect. Nature 455, 778–781 (2008).

    Article  CAS  Google Scholar 

  4. Jaworski, C. M. et al. Observation of the spin-Seebeck effect in a ferromagnetic semiconductor. Nat. Mater. 9, 898–903 (2010).

    Article  CAS  Google Scholar 

  5. Slachter, A., Bakker, F. L., Adam, J. P. & van Wees, B. J. Thermally driven spin injection from a ferromagnet into a non-magnetic metal. Nat. Phys. 6, 879–882 (2010).

    Article  CAS  Google Scholar 

  6. Uchida, K. et al. Long-range spin Seebeck effect and acoustic spin pumping. Nat. Mater. 10, 737–741 (2011).

    Article  CAS  Google Scholar 

  7. Flipse, J., Bakker, F. L., Slachter, A., Dejene, F. K. & van Wees, B. J. Direct observation of the spin-dependent Peltier effect. Nat. Nanotechnol. 7, 166–168 (2012).

    Article  CAS  Google Scholar 

  8. Jaworski, C. M., Myers, R. C., Johnston-Halperin, E. & Heremans, J. P. Giant spin Seebeck effect in a non-magnetic material. Nature 487, 210–213 (2012).

    Article  CAS  Google Scholar 

  9. Wu, S. M., Pearson, J. E. & Bhattacharya, A. Paramagnetic spin Seebeck effect. Phys. Rev. Lett. 114, 186602 (2015).

    Article  Google Scholar 

  10. Meyer, S. et al. Observation of the spin Nernst effect. Nat. Mater. 16, 977–981 (2017).

    Article  CAS  Google Scholar 

  11. Uchida, K.-I. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).

    Article  Google Scholar 

  12. Seki, S. et al. Thermal generation of spin current in an antiferromagnet. Phys. Rev. Lett. 115, 266601 (2015).

    Article  CAS  Google Scholar 

  13. Wu, S. M. et al. Antiferromagnetic spin Seebeck effect. Phys. Rev. Lett. 116, 097204 (2016).

    Article  Google Scholar 

  14. Aqeel, A. et al. Spin-Hall magnetoresistance and spin Seebeck effect in spin-spiral and paramagnetic phases of multiferroic CoCr2O4 films. Phys. Rev. B 92, 224410 (2015).

    Article  Google Scholar 

  15. Xiao, J., Bauer, G. E. W., Uchida, K.-C., Saitoh, E. & Maekawa, S. Theory of magnon-driven spin Seebeck effect. Phys. Rev. B 81, 214418 (2010).

    Article  Google Scholar 

  16. Saitoh, E., Ueda, M., Miyajima, H. & Tatara, G. Conversion of spin current into charge current at room temperature: inverse spin-Hall effect. Appl. Phys. Lett. 88, 182509 (2006).

    Article  Google Scholar 

  17. Mayer, S. & Kessler, J. Experimental verification of electron optic dichroism. Phys. Rev. Lett. 74, 4803–4806 (1995).

    Article  CAS  Google Scholar 

  18. Grissonnanche, G. et al. Chiral phonons in the pseudogap phase of cuprates. Nat. Phys. 16, 1108–1111 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, L. & Niu, Q. Chiral phonons at high-symmetry points in monolayer hexagonal lattices. Phys. Rev. Lett. 115, 115502 (2015).

    Article  Google Scholar 

  20. Zhu, H. et al. Observation of chiral phonons. Science 359, 579–582 (2018).

    Article  CAS  Google Scholar 

  21. Chen, X. et al. Entanglement of single-photons and chiral phonons in atomically thin WSe2. Nat. Phys. 15, 221–227 (2019).

    Article  CAS  Google Scholar 

  22. Chen, H., Wu, W., Zhu, J., Yang, S. A. & Zhang, L. Propagating chiral phonons in three-dimensional materials. Nano Lett. 21, 3060–3065 (2021).

    Article  CAS  Google Scholar 

  23. Choi, G.-M., Min, B.-C., Lee, K.-J. & Cahill, D. G. Spin current generated by thermally driven ultrafast demagnetization. Nat. Commun. 5, 4334 (2014).

    Article  CAS  Google Scholar 

  24. Schellekens, A. J., Kuiper, K. C., de Wit, R. R. J. C. & Koopmans, B. Ultrafast spin-transfer torque driven by femtosecond pulsed-laser excitation. Nat. Commun. 5, 4333 (2014).

    Article  CAS  Google Scholar 

  25. Choi, G.-M., Moon, C.-H., Min, B.-C., Lee, K.-J. & Cahill, D. G. Thermal spin-transfer torque driven by the spin-dependent Seebeck effect in metallic spin-valves. Nat. Phys. 11, 576–581 (2015).

    Article  CAS  Google Scholar 

  26. Georgieva, Z. N., Bloom, B. P., Ghosh, S. & Waldeck, D. H. Imprinting chirality onto the electronic states of colloidal perovskite nanoplatelets. Adv. Mater. 30, 1800097 (2018).

    Article  Google Scholar 

  27. Huang, Z. et al. Magneto-optical detection of photoinduced magnetism via chirality-induced spin selectivity in 2D chiral hybrid organic–inorganic perovskites. ACS Nano 14, 10370–10375 (2020).

    Article  CAS  Google Scholar 

  28. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    Article  CAS  Google Scholar 

  29. Hu, J., Yan, L. & You, W. Two-dimensional organic–inorganic hybrid perovskites: a new platform for optoelectronic applications. Adv. Mater. 30, 1802041 (2018).

    Article  Google Scholar 

  30. Long, G. et al. Spin control in reduced-dimensional chiral perovskites. Nat. Photonics 12, 528–533 (2018).

    Article  CAS  Google Scholar 

  31. Lu, H. et al. Spin-dependent charge transport through 2D chiral hybrid lead-iodide perovskites. Sci. Adv. 5, eaay0571 (2019).

    Article  CAS  Google Scholar 

  32. Choi, G.-M. & Cahill, D. G. Kerr rotation in Cu, Ag, and Au driven by spin accumulation and spin–orbit coupling. Phys. Rev. B 90, 214432 (2014).

    Article  Google Scholar 

  33. Schulz, L. G. The optical constants of silver, gold, copper, and aluminum. I. The absorption coefficient k. J. Opt. Soc. Am. 44, 357–362 (1954).

    Article  CAS  Google Scholar 

  34. McLaughlin, R., Sun, D., Zhang, C., Groesbeck, M. & Vardeny, Z. V. Optical detection of transverse spin-Seebeck effect in permalloy film using Sagnac interferometer microscopy. Phys. Rev. B 95, 180401 (2017).

    Article  Google Scholar 

  35. Cahill, D. G. Analysis of heat flow in layered structures for time-domain thermoreflectance. Rev. Sci. Instrum. 75, 5119–5122 (2004).

    Article  CAS  Google Scholar 

  36. Liu, J. et al. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method. Rev. Sci. Instrum. 84, 034902 (2013).

    Article  Google Scholar 

  37. Zhang, L. & Niu, Q. Angular momentum of phonons and the Einstein–de Haas effect. Phys. Rev. Lett. 112, 085503 (2014).

    Article  Google Scholar 

  38. Ren, Y., Xiao, C., Saparov, D. & Niu, Q. Phonon magnetic moment from electronic topological magnetization. Phys. Rev. Lett. 127, 186403 (2021).

    Article  CAS  Google Scholar 

  39. Brataas, A., Kent, A. D. & Ohno, H. Current-induced torques in magnetic materials. Nat. Mater. 11, 372–381 (2012).

    Article  CAS  Google Scholar 

  40. Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).

    Article  CAS  Google Scholar 

  41. Uchida, K. et al. Spin Seebeck insulator. Nat. Mater. 9, 894–897 (2010).

    Article  CAS  Google Scholar 

  42. Vetter, E. et al. Tuning of spin–orbit coupling in metal-free conjugated polymers by structural conformation. Phys. Rev. Mater. 4, 085603 (2020).

    Article  CAS  Google Scholar 

  43. Qian, Q. et al. Chiral molecular intercalation superlattices. Nature 606, 902–908 (2022).

    Article  CAS  Google Scholar 

  44. Das, T. K., Tassinari, F., Naaman, R. & Fransson, J. Temperature-dependent chiral-induced spin selectivity effect: experiments and theory. J. Phys. Chem. C 126, 3257–3264 (2022).

    Article  CAS  Google Scholar 

  45. Smith, I. C., Hoke, E. T., Solis-Ibarra, D., McGehee, M. D. & Karunadasa, H. I. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 53, 11232–11235 (2014).

    Article  CAS  Google Scholar 

  46. Liu, J., Choi, G.-M. & Cahill, D. G. Measurement of the anisotropic thermal conductivity of molybdenum disulfide by the time-resolved magneto-optic Kerr effect. J. Appl. Phys. 116, 233107 (2014).

    Article  Google Scholar 

Download references

Acknowledgements

J.L. acknowledges the financial support from the National Science Foundation under award number CBET 1943813 for the ultrafast measurements, thermal characterizations and thermal modelling. D.S. acknowledges the financial support provided by the US Department of Energy, Office of Science, under the grant number DE-SC0020992 for the device fabrications. D.S. and W.Y. acknowledge the support through the Center for Hybrid Organic–Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the US Department of Energy, Office of Science, Office of Basic Energy Sciences for material synthesis, thin-film preparations and magnetic characterizations. J.L. acknowledges partial financial support from the North Carolina Space Grant New Investigator Award for the student aids. D.S. and J.L. also acknowledge the partial financial support from the North Carolina State University Research and Innovation Seed Funding for the student aids. The X-ray diffraction of the perovskite thin films in this work was performed at the Chapel Hill Analytical and Nanofabrication Laboratory (CHANL), a member of the North Carolina Research Triangle Nanotechnology Network (RTNN), which is supported by the National Science Foundation, grant ECCS-1542015, as part of the National Nanotechnology Coordinated Infrastructure (NNCI). The circular dichroism measurements were performed at the UNC Macromolecular Interactions Facility supported by the National Cancer Institute of the National Institutes of Health under award number P30CA016086.

Author information

Authors and Affiliations

Authors

Contributions

D.S., J.L. and W.Y. conceived the experiments and supervised this research. K.K., C.Y. and Z.W. were responsible for the ultrafast TR-MOKE and TDTR measurements. E.V., L.Y. and A.C. fabricated the samples. X.L., J.L., L.Z. and J.Z. provided the theoretical models. Y.Y. and J.L. calculated the spatial and temporal temperature profile. C.Y. and R.S. conducted the magnetization dynamics and spin current density analysis. D.S. and J.L. wrote the manuscript. All authors contributed to editing the manuscript.

Corresponding authors

Correspondence to Lifa Zhang, Wei You, Dali Sun or Jun Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Yossi Paltiel and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussion, Figs. 1–22 and Tables 1–5.

Supplementary Video 1

The time-dependent spin current is visualized with different applied external magnetic fields.

Source data

Source Data Fig. 2

Source data for transient and spatial temperature in Fig. 2a–c; transient Kerr rotation signals in Fig. 2d.

Source Data Fig. 3

Source data for transient Kerr rotation signals plotted in Fig. 3b–f.

Source Data Fig. 4

Source data for transient MOKE data plotted in Fig. 4a–e.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, K., Vetter, E., Yan, L. et al. Chiral-phonon-activated spin Seebeck effect. Nat. Mater. 22, 322–328 (2023). https://doi.org/10.1038/s41563-023-01473-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-023-01473-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing