Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge transport in mixed metal halide perovskite semiconductors

Abstract

Investigation of the inherent field-driven charge transport behaviour of three-dimensional lead halide perovskites has largely remained challenging, owing to undesirable ionic migration effects near room temperature and dipolar disorder instabilities prevalent specifically in methylammonium-and-lead-based high-performing three-dimensional perovskite compositions. Here, we address both these challenges and demonstrate that field-effect transistors based on methylammonium-free, mixed metal (Pb/Sn) perovskite compositions do not suffer from ion migration effects as notably as their pure-Pb counterparts and reliably exhibit hysteresis-free p-type transport with a mobility reaching 5.4 cm2 V–1 s−1. The reduced ion migration is visualized through photoluminescence microscopy under bias and is manifested as an activated temperature dependence of the field-effect mobility with a low activation energy (~48 meV) consistent with the presence of the shallow defects present in these materials. An understanding of the long-range electronic charge transport in these inherently doped mixed metal halide perovskites will contribute immensely towards high-performance optoelectronic devices.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: FET characterization on Pb–Sn perovskite films.
Fig. 2: Atomistic origin of high mobility p-type transport in mixed Pb–Sn devices.
Fig. 3: Chemical analysis of defects in mixed Pb–Sn perovskite films.
Fig. 4: Temperature-dependent charge transport.
Fig. 5: Lateral ion migration in perovskites.

Data availability

The data presented in the paper will be made available after acceptance of the paper on the University of Cambridge repository: https://www.data.cam.ac.uk/repository.

References

  1. Kojima, A., Teshima, K., Shirai, Y. & Miyasaka, T. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131, 6050–6051 (2009).

    Article  CAS  Google Scholar 

  2. Best Research-Cell Efficiency Chart (National Renewable Energy Laboratory, accessed 22 December 2022); https://www.nrel.gov/pv/cell-efficiency.html

  3. Zhao, B. et al. Efficient light-emitting diodes from mixed-dimensional perovskites on a fluoride interface. Nat. Electron. 3, 704–710 (2020).

    Article  CAS  Google Scholar 

  4. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  5. Kar, S., Jamaludin, N. F., Yantara, N., Mhaisalkar, S. G. & Leong, W. L. Recent advancements and perspectives on light management and high performance in perovskite light-emitting diodes. Nanophotonics 10, 2103–2143 (2020).

    Article  Google Scholar 

  6. Lei, L., Dong, Q., Gundogdu, K. & So, F. Metal halide perovskites for laser applications. Adv. Funct. Mater. 31, 2010144 (2021).

    Article  CAS  Google Scholar 

  7. Deschler, F. et al. High photoluminescence efficiency and optically pumped lasing in solution-processed mixed halide perovskite semiconductors. J. Phys. Chem. Lett. 5, 1421–1426 (2014).

    Article  CAS  Google Scholar 

  8. Miao, J. & Zhang, F. Recent progress on highly sensitive perovskite photodetectors. J. Mater. Chem. C 7, 1741–1791 (2019).

    Article  CAS  Google Scholar 

  9. Basiricò, L. et al. Detection of X-rays by solution-processed cesium-containing mixed triple cation perovskite thin films. Adv. Funct. Mater. 29, 1902346 (2019).

    Article  Google Scholar 

  10. Dey, K., Roose, B. & Stranks, S. D. Optoelectronic properties of low-bandgap halide perovskites for solar cell applications. Adv. Mater. 33, 2102300 (2021).

    Article  CAS  Google Scholar 

  11. Herz, L. M. Charge-carrier mobilities in metal halide perovskites: fundamental mechanisms and limits. ACS Energy Lett. 2, 1539–1548 (2017).

    Article  CAS  Google Scholar 

  12. Kagan, C. R., Mitzi, D. B. & Dimitrakopoulos, C. D. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Science 286, 945–947 (1999).

    Article  CAS  Google Scholar 

  13. Matsushima, T. et al. Solution-processed organic–inorganic perovskite field-effect transistors with high hole mobilities. Adv. Mater. 28, 10275–10281 (2016).

    Article  CAS  Google Scholar 

  14. Matsushima, T. et al. N-channel field-effect transistors with an organic-inorganic layered perovskite semiconductor. Appl. Phys. Lett. 109, 253301 (2016).

    Article  Google Scholar 

  15. Mitzi, D. B. et al. Hybrid field-effect transistor based on a low-temperature melt-processed channel layer. Adv. Mater. 14, 1772–1776 (2002).

    Article  CAS  Google Scholar 

  16. Reo, Y. et al. Effect of monovalent metal iodide additives on the optoelectric properties of two-dimensional Sn-based perovskite films. Chem. Mater. 33, 2498–2505 (2021).

    Article  CAS  Google Scholar 

  17. Zhu, H. et al. High-performance and reliable lead-free layered-perovskite transistors. Adv. Mater. 32, 2002717 (2020).

    Article  CAS  Google Scholar 

  18. Shao, S. et al. Field-effect transistors based on formamidinium tin triiodide perovskite. Adv. Funct. Mater. 31, 2008478 (2021).

    Article  CAS  Google Scholar 

  19. Zhu, H. et al. High-performance hysteresis-free perovskite transistors through anion engineering. Nat. Commun. 13, 1741 (2022).

    Article  CAS  Google Scholar 

  20. Liu, A. et al. High-performance inorganic metal halide perovskite transistors. Nat. Electron. 5, 78–83 (2022).

    Article  CAS  Google Scholar 

  21. Senanayak, S. P. et al. Understanding charge transport in lead iodide perovskite thin-film field-effect transistors. Sci. Adv. 3, e1601935 (2017).

    Article  Google Scholar 

  22. Wang, J. et al. Investigation of electrode electrochemical reactions in CH3NH3PbBr3 perovskite single-crystal field-effect transistors. Adv. Mater. 31, 1902618 (2019).

    Article  Google Scholar 

  23. Yusoff, A. R. B. M. et al. Ambipolar triple cation perovskite field effect transistors and inverters. Adv. Mater. 29, 1602940 (2017).

    Article  Google Scholar 

  24. Senanayak, S. P. et al. A general approach for hysteresis-free, operationally stable metal halide perovskite field-effect transistors. Sci. Adv. 6, eaaz4948 (2020).

    Article  CAS  Google Scholar 

  25. Chin, X. Y., Cortecchia, D., Yin, J., Bruno, A. & Soci, C. Lead iodide perovskite light-emitting field-effect transistor. Nat. Commun. 6, 7383 (2015).

    Article  CAS  Google Scholar 

  26. She, X.-J. et al. A solvent-based surface cleaning and passivation technique for suppressing ionic defects in high-mobility perovskite field-effect transistors. Nat. Electron. 3, 694–703 (2020).

    Article  CAS  Google Scholar 

  27. Mei, Y., Zhang, C., Vardeny, Z. V. & Jurchescu, O. D. Electrostatic gating of hybrid halide perovskite field-effect transistors: balanced ambipolar transport at room-temperature. MRS Commun. 5, 297–301 (2015).

    Article  CAS  Google Scholar 

  28. Conings, B. et al. Intrinsic thermal instability of methylammonium lead trihalide perovskite. Adv. Energy Mater. 5, 1500477 (2015).

    Article  Google Scholar 

  29. Xiao, K. et al. All-perovskite tandem solar cells with 24.2% certified efficiency and area over 1 cm2 using surface-anchoring zwitterionic antioxidant. Nat. Energy 5, 870–880 (2020).

    Article  Google Scholar 

  30. Euvrard, J., Yan, Y. & Mitzi, D. B. Electrical doping in halide perovskites. Nat. Rev. Mater. 6, 531–549 (2021).

    Article  CAS  Google Scholar 

  31. Konstantakou, M. & Stergiopoulos, T. A critical review on tin halide perovskite solar cells. J. Mater. Chem. A 5, 11518–11549 (2017).

    Article  CAS  Google Scholar 

  32. Meggiolaro, D., Ricciarelli, D., Alasmari, A. A., Alasmary, F. A. S. & De Angelis, F. Tin versus lead redox chemistry modulates charge trapping and self-doping in tin/lead iodide perovskites. J. Phys. Chem. Lett. 11, 3546–3556 (2020).

    Article  CAS  Google Scholar 

  33. Goyal, A. et al. Origin of pronounced nonlinear band gap behavior in lead–tin hybrid perovskite alloys. Chem. Mater. 30, 3920–3928 (2018).

    Article  CAS  Google Scholar 

  34. Rajagopal, A., Stoddard, R. J., Hillhouse, H. W. & Jen, A. K. Y. On understanding bandgap bowing and optoelectronic quality in Pb–Sn alloy hybrid perovskites. J. Mater. Chem. A 7, 16285–16293 (2019).

    Article  CAS  Google Scholar 

  35. Ma, F. et al. Stable α/δ phase junction of formamidinium lead iodide perovskites for enhanced near-infrared emission. Chem. Sci. 8, 800–805 (2017).

    Article  CAS  Google Scholar 

  36. Choi, H. H., Cho, K., Frisbie, C. D., Sirringhaus, H. & Podzorov, V. Critical assessment of charge mobility extraction in FETs. Nat. Mater. 17, 2–7 (2018).

    Article  CAS  Google Scholar 

  37. Galkowski, K. et al. Excitonic properties of low-band-gap lead–tin halide perovskites. ACS Energy Lett. 4, 615–621 (2019).

    Article  CAS  Google Scholar 

  38. Schueller, E. C. et al. Crystal structure evolution and notable thermal expansion in hybrid perovskites formamidinium tin iodide and formamidinium lead bromide. Inorg. Chem. 57, 695–701 (2018).

    Article  CAS  Google Scholar 

  39. Stoumpos, C. C., Malliakas, C. D. & Kanatzidis, M. G. Semiconducting tin and lead iodide perovskites with organic cations: phase transitions, high mobilities, and near-infrared photoluminescent properties. Inorg. Chem. 52, 9019–9038 (2013).

    Article  CAS  Google Scholar 

  40. Bandara, R. M. I. et al. Tin(iv) dopant removal through anti-solvent engineering enabling tin based perovskite solar cells with high charge carrier mobilities. J. Mater. Chem. C 7, 8389–8397 (2019).

    Article  CAS  Google Scholar 

  41. Klug, M. T. et al. Metal composition influences optoelectronic quality in mixed-metal lead–tin triiodide perovskite solar absorbers. Energy Environ. Sci. 13, 1776–1787 (2020).

    Article  CAS  Google Scholar 

  42. Milot, R. L., Eperon, G. E., Snaith, H. J., Johnston, M. B. & Herz, L. M. Temperature-dependent charge-carrier dynamics in CH3NH3PbI3 perovskite thin films. Adv. Funct. Mater. 25, 6218–6227 (2015).

    Article  CAS  Google Scholar 

  43. Milot, R. L. et al. The effects of doping density and temperature on the optoelectronic properties of formamidinium tin triiodide thin films. Adv. Mater. 30, 1804506 (2018).

    Article  Google Scholar 

  44. Gélvez-Rueda, M. C., Renaud, N. & Grozema, F. C. Temperature dependent charge carrier dynamics in formamidinium lead iodide perovskite. J. Phys. Chem. C 121, 23392–23397 (2017).

    Article  Google Scholar 

  45. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  46. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  47. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  48. Ghosh, D., Smith, A. R., Walker, A. B. & Islam, M. S. Mixed A-cation perovskites for solar cells: atomic-scale insights into structural distortion, hydrogen bonding, and electronic properties. Chem. Mater. 30, 5194–5204 (2018).

    Article  CAS  Google Scholar 

  49. Even, J., Pedesseau, L., Jancu, J.-M. & Katan, C. Importance of spin–orbit coupling in hybrid organic/inorganic perovskites for photovoltaic applications. J. Phys. Chem. Lett. 4, 2999–3005 (2013).

    Article  CAS  Google Scholar 

  50. Ghosh, D., Aziz, A., Dawson, J. A., Walker, A. B. & Islam, M. S. Putting the squeeze on lead iodide perovskites: pressure-induced effects to tune their structural and optoelectronic behavior. Chem. Mater. 31, 4063–4071 (2019).

    Article  CAS  Google Scholar 

  51. Steiner, S., Khmelevskyi, S., Marsmann, M. & Kresse, G. Calculation of the magnetic anisotropy with projected-augmented-wave methodology and the case study of disordered Fe1–xCox alloys. Phys. Rev. B 93, 224425 (2016).

    Article  Google Scholar 

  52. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

Download references

Acknowledgements

S.P.S. acknowledges funding support from the Royal Society through the Newton Alumni Fellowship (AL\211004, AL\201019 and AL\191021), Science and Engineering Research Board (SERB-SRG/2020/001641 and IPA/2021/000096), Department of Atomic Energy (DAE), Government of India. K.D. acknowledges the support of the Cambridge Trust and SERB (Government of India) in the form of a Cambridge India Ramanujan Scholarship. K.D. thanks F. Lang for useful discussions on PL measurements. This work received funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (HYPERION, grant agreement no. 756962). R.H.F. and R.S. acknowledge funding and support from the SUNRISE project (EP/P032591/1). R.S. acknowledges a Newton International Fellowship from the Royal Society. J.L.M.D. and W.L. thank the UK Royal Academy of Engineering, grant CiET1819_24; Engineering and Physical Sciences Research Council (EPSRC) grants EP/N004272/1, EP/P007767/1 and EP/L011700/1; and the Winton Programme for the Physics of Sustainability. W.L. acknowledges B. Welland for useful discussions. B.R. acknowledges EPSRC, grant number EP/T02030X/1. S.J.Z. acknowledges support from the Polish National Agency for Academic Exchange within the Bekker programme (grant no. PPN/BEK/2020/1/00264/U/00001). N.T. acknowledges the use of resources of the Center for Functional Nanomaterials, which is a US Department of Energy Office of Science User Facility, at Brookhaven National Laboratory under contract no. DE-SC0012704. D.G. thanks the Center for Integrated Nanotechnologies, a US Department of Energy and Office of Basic Energy Sciences user facility, at Los Alamos National Laboratory, for providing computational facilities. Y.Z. thanks the Chinese Scholarship Council and the EPSRC Centre for Doctoral Training in Graphene Technology for financial support. H.S. thanks the Royal Society for support through a Royal Society Research Professorship (RP\R1\201082). S.D.S. acknowledges support from the Royal Society and Tata Group (UF150033).

Author information

Authors and Affiliations

Authors

Contributions

S.P.S. and K.D. conceived the idea and designed the experimental plan with input from S.D.S. and H.S.; K.D. optimized the perovskite films used for the measurements and performed the spectroscopic and structural measurements. S.P.S. fabricated the FETs and performed all the FET measurements and bias stress stability measurements. R.S. performed the PL mapping measurement and discussed it with S.P.S., K.D. and R.H.F.; W.L. and J.L.M.D. performed and analysed the XPS measurements. D.G. carried out the first-principles density functional theory calculations. S.P.S. and Y.Z. performed the switching measurement, the contact modification and the associated FET measurements. B.R. measured the top-view scanning electron microscopy of the perovskite films. S.J.Z. and Z.A.-G. conducted the PDS measurements. W.W. assisted with the Hall measurements. N.T. performed the grazing incidence wide-angle X-ray scattering measurements. Y.Z. and N.T. fabricated the Hall patterns. S.P.S. and K.D. interpreted all the data related to device measurements and material characterization, with input from all authors. All authors discussed and revised the manuscript.

Corresponding authors

Correspondence to Satyaprasad P. Senanayak, Samuel D. Stranks or Henning Sirringhaus.

Ethics declarations

Competing interests

S.D.S. is a cofounder of Swift Solar. The remaining authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senanayak, S.P., Dey, K., Shivanna, R. et al. Charge transport in mixed metal halide perovskite semiconductors. Nat. Mater. 22, 216–224 (2023). https://doi.org/10.1038/s41563-022-01448-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01448-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing