Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations


Cations with suitable sizes to occupy an interstitial site of perovskite crystals have been widely used to inhibit ion migration and promote the performance and stability of perovskite optoelectronics. However, such interstitial doping inevitably leads to lattice microstrain that impairs the long-range ordering and stability of the crystals, causing a sacrificial trade-off. Here, we unravel the evident influence of the valence states of the interstitial cations on their efficacy to suppress the ion migration. Incorporation of a trivalent neodymium cation (Nd3+) effectively mitigates the ion migration in the perovskite lattice with a reduced dosage (0.08%) compared to a widely used monovalent cation dopant (Na+, 0.45%). The photovoltaic performances and operational stability of the prototypical perovskite solar cells are enhanced with a trace amount of Nd3+ doping while minimizing the sacrificial trade-off.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Theoretical models of iodide ion migration pathway and detrimental effects of induced tensile microstrain.
Fig. 2: Photovoltaic performance of the perovskite solar cells with or without Nd3+, Ca2+ or Na+ doping and corresponding surface morphology of the perovskite films.
Fig. 3: Passivation effects introduced by cation incorporation.
Fig. 4: Stability enhancements by suppressing ion migration.

Data availability

The data that support the findings of this study are available from the corresponding authors upon request.


  1. Kim, G., Min, H., Lee, K. S., Yoon, S. M. & Seok, S. I. Impact of strain relaxation on performance of α-formamidinium lead iodide perovskite solar cells. Science 370, 108–112 (2020).

    Article  CAS  Google Scholar 

  2. Jeong, M. et al. Stable perovskite solar cells with efficiency exceeding 24.8% and 0.3-V voltage loss. Science 369, 1615–1620 (2020).

    Article  CAS  Google Scholar 

  3. Zheng, X. et al. Managing grains and interfaces via ligand anchoring enables 22.3%-efficiency inverted perovskite solar cells. Nat. Energy 5, 131–140 (2020).

    Article  CAS  Google Scholar 

  4. Lin, Y.-H. et al. A piperidinium salt stabilizes efficient metal-halide perovskite solar cells. Science 369, 96–102 (2020).

    Article  CAS  Google Scholar 

  5. Liu, Z. et al. A holistic approach to interface stabilization for efficient perovskite solar modules with over 2,000-hour operational stability. Nat. Energy 5, 596–604 (2020).

    Article  CAS  Google Scholar 

  6. Tan, H. et al. Efficient and stable solution-processed planar perovskite solar cells via contact passivation. Science 355, 722–726 (2017).

    Article  CAS  Google Scholar 

  7. Jung, E. H. et al. Efficient, stable and scalable perovskite solar cells using poly(3-hexylthiophene). Nature 567, 511–515 (2019).

    Article  CAS  Google Scholar 

  8. Wang, L. et al. A Eu3+-Eu2+ ion redox shuttle imparts operational durability to Pb-I perovskite solar cells. Science 363, 265–270 (2019).

    Article  CAS  Google Scholar 

  9. Yuan, Y. & Huang, J. Ion migration in organometal trihalide perovskite and its impact on photovoltaic efficiency and stability. Acc. Chem. Res. 49, 286–293 (2016).

    Article  CAS  Google Scholar 

  10. Calado, P. et al. Evidence for ion migration in hybrid perovskite solar cells with minimal hysteresis. Nat. Commun. 7, 13831 (2016).

    Article  CAS  Google Scholar 

  11. Tan, S. et al. Steric impediment of ion migration contributes to improved operational stability of perovskite solar cells. Adv. Mater. 32, 1906995 (2020).

    Article  CAS  Google Scholar 

  12. Lee, J.-W., Kim, S.-G., Yang, J.-M., Yang, Y. & Park, N.-G. Verification and mitigation of ion migration in perovskite solar cells. APL Mater. 7, 041111 (2019).

    Article  Google Scholar 

  13. Zhang, H. et al. Phase segregation due to ion migration in all-inorganic mixed-halide perovskite nanocrystals. Nat. Commun. 10, 1088 (2019).

    Article  CAS  Google Scholar 

  14. Boyd, C. C., Cheacharoen, R., Leijtens, T. & McGehee, M. D. Understanding degradation mechanisms and improving stability of perovskite photovoltaics. Chem. Rev. 119, 3418–3451 (2018).

    Article  Google Scholar 

  15. Abdi-Jalebi, M. et al. Maximizing and stabilizing luminescence from halide perovskites with potassium passivation. Nature 555, 497–501 (2018).

    Article  CAS  Google Scholar 

  16. Son, D.-Y. et al. Universal approach toward hysteresis-free perovskite solar cell via defect engineering. J. Am. Chem. Soc. 140, 1358–1364 (2018).

    Article  CAS  Google Scholar 

  17. Cao, J., Tao, S. X., Bobbert, P. A., Wong, C. P. & Zhao, N. Interstitial occupancy by extrinsic alkali cations in perovskites and its impact on ion migration. Adv. Mater. 30, 1707350 (2018).

    Article  Google Scholar 

  18. Jones, T. W. et al. Lattice strain causes non-radiative losses in halide perovskites. Energy Environ. Sci. 12, 596–606 (2019).

    Article  CAS  Google Scholar 

  19. Zhao, J. et al. Strained hybrid perovskite thin films and their impact on the intrinsic stability of perovskite solar cells. Sci. Adv. 3, eaao5616 (2017).

    Article  Google Scholar 

  20. Kim, J. Y., Lee, J.-W., Jung, H. S., Shin, H. & Park, N.-G. High-efficiency perovskite solar cells. Chem. Rev. 120, 7867–7918 (2020).

    Article  CAS  Google Scholar 

  21. Lee, J.-W., Tan, S., Seok, S. I., Yang, Y. & Park, N.-G. Rethinking the A cation in halide perovskites. Science 375, eabj1186 (2022).

    Article  CAS  Google Scholar 

  22. Callister, W. D. & Rethwisch, D. G. Fundamentals of Materials Science and Engineering. Vol. 471660817 (Wiley London, 2000).

  23. Goldschmidt, V. Crystal structure and chemical constitution. Trans. Faraday Soc. 25, 253–283 (1929).

    Article  CAS  Google Scholar 

  24. Fang, Z., He, H., Gan, L., Li, J. & Ye, Z. Understanding the role of lithium doping in reducing nonradiative loss in lead halide perovskites. Adv. Sci. 5, 1800736 (2018).

    Article  Google Scholar 

  25. Li, C. et al. Emerging alkali metal ion (Li+, Na+, K+ and Rb+) doped perovskite films for efficient solar cells: recent advances and prospects. J. Mater. Chem. A 7, 24150–24163 (2019).

    Article  CAS  Google Scholar 

  26. Zhao, P. et al. Improved carriers injection capacity in perovskite solar cells by introducing A-site interstitial defects. J. Mater. Chem. A 5, 7905–7911 (2017).

    Article  CAS  Google Scholar 

  27. Yan, M., Cannon, R. & Bowen, H. Space charge, elastic field, and dipole contributions to equilibrium solute segregation at interfaces. J. Appl. Phys. 54, 764–778 (1983).

    Article  CAS  Google Scholar 

  28. Kirchartz, T., Márquez, J. A., Stolterfoht, M. & Unold, T. Photoluminescence‐based characterization of halide perovskites for photovoltaics. Adv. Energy Mater. 10, 1904134 (2020).

    Article  CAS  Google Scholar 

  29. Péan, E. V., Dimitrov, S., De Castro, C. S. & Davies, M. L. Interpreting time-resolved photoluminescence of perovskite materials. Phys. Chem. Chem. Phys. 22, 28345–28358 (2020).

    Article  Google Scholar 

  30. Tan, S. et al. Shallow iodine defects accelerate the degradation of α-phase formamidinium perovskite. Joule 4, 2426–2442 (2020).

    Article  CAS  Google Scholar 

  31. Kim, S.-G. et al. Potassium ions as a kinetic controller in ionic double layers for hysteresis-free perovskite solar cells. J. Mater. Chem. A 7, 18807–18815 (2019).

    Article  CAS  Google Scholar 

  32. Domanski, K., Alharbi, E. A., Hagfeldt, A., Grätzel, M. & Tress, W. Systematic investigation of the impact of operation conditions on the degradation behaviour of perovskite solar cells. Nat. Energy 3, 61–67 (2018).

    Article  CAS  Google Scholar 

  33. Cacovich, S. et al. Gold and iodine diffusion in large area perovskite solar cells under illumination. Nanoscale 9, 4700–4706 (2017).

    Article  CAS  Google Scholar 

  34. Wu, S. et al. A chemically inert bismuth interlayer enhances long-term stability of inverted perovskite solar cells. Nat. Commun. 10, 1161 (2019).

    Article  Google Scholar 

  35. Jiang, Q. et al. Surface passivation of perovskite film for efficient solar cells. Nat. Photon. 13, 460–466 (2019).

    Article  CAS  Google Scholar 

  36. Jiang, Q. et al. Planar‐structure perovskite solar cells with efficiency beyond 21%. Adv. Mater. 29, 1703852 (2017).

    Article  Google Scholar 

  37. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Furthmüller, J. Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  40. Perdew, J. P. et al. Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008).

    Article  Google Scholar 

  41. Grimme, S. Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction. J. Comput. Chem. 27, 1787–1799 (2006).

    Article  CAS  Google Scholar 

  42. Grimme, S., Antony, J., Ehrlich, S. & Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  43. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

Download references


This material is based upon work supported by the US Department of Energy’s Office of Energy Efficiency and Renewable Energy under the Solar Energy Technologies Office award no. DE-EE0008751. J.-W.L. and N.-G.P. acknowledge financial support from a National Research Foundation of Korea grant funded by the Korea government (Ministry of Science and ICT) under contract nos 2022R1C1C1011975, 2022M3J1A1064315 and 2021R1A3B1076723 (Research Leader Program). M.W. and J.B. acknowledge financial support from the National Natural Science Foundation of China (nos 12104081 and 51872036). Computing resources used in this work were provided by the National Center for High Performance Computing of Turkey (grant no. 1008342020). I.Y. acknowledges support by the Scientific and Technological Research Council of Turkey (TÜBITAK; grant no. 119F380). We thank Y. Chen and X. Li from the Instrumentation and Service Center for Molecular Sciences at Westlake University for the assistance with measurements.

Author information

Authors and Affiliations



Y. Zhao and J.-W.L. conceived the idea, designed and conducted the experiments and prepared the manuscript under the supervision of Y. Yang. I.Y. performed the DFT calculations. M.W. collected the SEM data under the supervision of J.B.; M.H.W. performed the positron annihilation spectroscopy test and analysed the data. M.X. helped take the cryogenic cross-sectional transmission electron microscopy images under the supervision of X.P.; J.-H.L. and S.-G.C. conducted the in situ PL and TOF-SIMS measurements. S.T. helped with the X-ray diffraction tests. T.H. performed the transient photovoltage tests. S.-J.L. measured the d.c. temperature-dependent conductivity of the samples. A.Z. helped with film optimization. Y. Yin and J.L. performed the PL and absorption measurements under the supervision of Y.S. and H.M.; W.Y., Q.X., Y. Zhou and E.Z. helped with data analysis. P.S. and S.W. helped with the ICP-MS measurements. R.W., J.X., T.-H.H., S.-H.B. and N.-G.P. provided helpful discussion during the project. All the authors discussed the results and commented on the manuscript.

Corresponding authors

Correspondence to Ilhan Yavuz, Jin-Wook Lee or Yang Yang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Samuel Stranks and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–28 and Tables 1–10.

Reporting Summary.

Supplementary Video 1

In situ PL measurement using lateral devices based on the reference film and the film incorporated with 0.08% Nd3+. The measurements were made under 440 nm illumination and an electric field of 150 mV μm–1 to visualize the ion migration.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Y., Yavuz, I., Wang, M. et al. Suppressing ion migration in metal halide perovskite via interstitial doping with a trace amount of multivalent cations. Nat. Mater. 21, 1396–1402 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing