Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Two-dimensional devices and integration towards the silicon lines

Abstract

Despite technical efforts and upgrades, advances in complementary metal–oxide–semiconductor circuits have become unsustainable in the face of inherent silicon limits. New materials are being sought to compensate for silicon deficiencies, and two-dimensional materials are considered promising candidates due to their atomically thin structures and exotic physical properties. However, a potentially applicable method for incorporating two-dimensional materials into silicon platforms remains to be illustrated. Here we try to bridge two-dimensional materials and silicon technology, from integrated devices to monolithic ‘on-silicon’ (silicon as the substrate) and ‘with-silicon’ (silicon as a functional component) circuits, and discuss the corresponding requirements for material synthesis, device design and circuitry integration. Finally, we summarize the role played by two-dimensional materials in the silicon-dominated semiconductor industry and suggest the way forward, as well as the technologies that are expected to become mainstream in the near future.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of applications and potential for 2D materials integrated with silicon.
Fig. 2: Photonic devices and 2D transistors integrated into CMOS lines.
Fig. 3: Monolithic on-silicon 2D circuit demonstrations.
Fig. 4: Monolithic with-silicon hybrid integration.
Fig. 5: Requirements for material transfer and device design.

References

  1. Liu, C. et al. Two-dimensional materials for next-generation computing technologies. Nat. Nanotechnol. 15, 545–557 (2020).

    CAS  Google Scholar 

  2. Liu, Y. et al. Promises and prospects of two-dimensional transistors. Nature 591, 43–53 (2021).

    CAS  Google Scholar 

  3. Wang, S., Liu, X. & Zhou, P. The road for two‐dimensional semiconductors in the silicon age. Adv. Mater. https://doi.org/10.1002/adma.202106886 (2021).

  4. Wan, X. et al. Quantitative analysis of scattering mechanisms in highly crystalline CVD MoS2 through a self-limited growth strategy by interface engineering. Small 12, 438–445 (2016).

    CAS  Google Scholar 

  5. Shen, P.-C. et al. Ultralow contact resistance between semimetal and monolayer semiconductors. Nature 593, 211–217 (2021).

    CAS  Google Scholar 

  6. International Roadmap for Devices and Systems (IRDS) 2020 Edition (IEEE, 2020); https://irds.ieee.org/editions/2020

  7. Jena, D. Tunneling transistors based on graphene and 2-D crystals. Proc. IEEE 101, 1585–1602 (2013).

    CAS  Google Scholar 

  8. Wu, F. et al. Vertical MoS2 transistors with sub-1-nm gate lengths. Nature 603, 259–264 (2022).

    CAS  Google Scholar 

  9. O’Brien, K. et al. Advancing 2D monolayer CMOS through contact, channel and interface engineering. In 2021 IEEE International Electron Devices Meeting (IEDM) 7.1.1–7.1.4 (IEEE, 2021).

  10. Kumar, A. et al. Sub-200 Ω·µm alloyed contacts to synthetic monolayer MoS2. In 2021 IEEE International Electron Devices Meeting (IEDM) 7.3.1–7.3.4 (IEEE, 2021).

  11. Hong, S. et al. Ultralow-dielectric-constant amorphous boron nitride. Nature 582, 511–514 (2020).

    CAS  Google Scholar 

  12. Smets, Q. et al. Scaling of double-gated WS2 FETs to sub-5nm physical gate length fabricated in a 300mm FAB. In 2021 IEEE International Electron Devices Meeting (IEDM) 34.2.1–34.2.4 (IEEE, 2021).

  13. Chaves, A. et al. Bandgap engineering of two-dimensional semiconductor materials. npj 2D Mater. Appl. 4, 29 (2020).

    CAS  Google Scholar 

  14. Kim, Y. D. et al. Bright visible light emission from graphene. Nat. Nanotechnol. 10, 676–681 (2015).

    CAS  Google Scholar 

  15. Zeng, B. et al. Hybrid graphene metasurfaces for high-speed mid-infrared light modulation and single-pixel imaging. Light Sci. Appl. 7, 51 (2018).

    Google Scholar 

  16. Qu, Y. et al. Enhanced four-wave mixing in silicon nitride waveguides integrated with 2D layered graphene oxide films. Adv. Opt. Mater. 8, 2001048 (2020).

    CAS  Google Scholar 

  17. Malic, E. et al. Carrier dynamics in graphene: ultrafast many‐particle phenomena. Ann. Phys. 529, 1700038 (2017).

  18. Wang, P. et al. Sensing infrared photons at room temperature: from bulk materials to atomic layers. Small 15, 1904396 (2019).

    CAS  Google Scholar 

  19. Hinton, H. et al. A 200 × 256 image sensor heterogeneously integrating a 2D nanomaterial-based photo-FET array and CMOS time-to-digital converters. In 2022 IEEE International Solid-State Circuits Conference (ISSCC) 12.2.1–12.2.3 (IEEE, 2022).

  20. Zha, J. et al. Infrared photodetectors based on 2D materials and nanophotonics. Adv. Funct. Mater. 32, 2111970 (2022).

    CAS  Google Scholar 

  21. Gonzalez Marin, J. F., Unuchek, D., Watanabe, K., Taniguchi, T. & Kis, A. MoS2 photodetectors integrated with photonic circuits. npj 2D Mater. Appl. 3, 14 (2019).

    Google Scholar 

  22. Xu, F. et al. Complex refractive index tunability of graphene at 1550 nm wavelength. Appl. Phys. Lett. 106, 031109 (2015).

    Google Scholar 

  23. Yu, L., Dai, D. & He, S. Graphene-based transparent flexible heat conductor for thermally tuning nanophotonic integrated devices. Appl. Phys. Lett. 105, 251104 (2014).

    Google Scholar 

  24. Qiao, J. et al. Ultrasensitive and broadband all‐optically controlled THz modulator based on MoTe2/Si van der Waals heterostructure. Adv. Opt. Mater. 8, 2000160 (2020).

    CAS  Google Scholar 

  25. Pei, J. et al. Producing air-stable monolayers of phosphorene and their defect engineering. Nat. Commun. 7, 10450 (2016).

    CAS  Google Scholar 

  26. Zhang, Y. et al. Optimizing the Kerr nonlinear optical performance of silicon waveguides integrated with 2D graphene oxide films. J. Lightwave Technol. 39, 4671–4683 (2021).

    CAS  Google Scholar 

  27. Asselberghs, I. et al. Wafer-scale integration of double gated WS2-transistors in 300mm Si CMOS fab. In 2020 IEEE International Electron Devices Meeting (IEDM) 40.2.1–40.2.4 (IEEE, 2020).

  28. Schram, T. et al. High yield and process uniformity for 300 mm integrated WS2 FETs. In 2021 Symposium on VLSI Technology (VLSI) 1–2 (IEEE, 2021).

  29. Han, S.-J., Garcia, A. V., Oida, S., Jenkins, K. A. & Haensch, W. Graphene radio frequency receiver integrated circuit. Nat. Commun. 5, 3086 (2014).

    Google Scholar 

  30. Zeng, S. et al. An application-specific image processing array based on WSe2 transistors with electrically switchable logic functions. Nat. Commun. 13, 56 (2022).

    CAS  Google Scholar 

  31. Lin, Z. et al. Solution-processable 2D semiconductors for high-performance large-area electronics. Nature 562, 254–258 (2018).

    CAS  Google Scholar 

  32. Wachter, S., Polyushkin, D. K., Bethge, O. & Mueller, T. A microprocessor based on a two-dimensional semiconductor. Nat. Commun. 8, 14948 (2017).

    CAS  Google Scholar 

  33. Yu, L. et al. Design, modeling, and fabrication of chemical vapor deposition grown MoS2 circuits with E-mode FETs for large-area electronics. Nano Lett. 16, 6349–6356 (2016).

    CAS  Google Scholar 

  34. Xiang, L. et al. Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1, 237–245 (2018).

    Google Scholar 

  35. Pan, C. et al. Reconfigurable logic and neuromorphic circuits based on electrically tunable two-dimensional homojunctions. Nat. Electron. 3, 383–390 (2020).

    CAS  Google Scholar 

  36. Chen, H. et al. Logic gates based on neuristors made from two-dimensional materials. Nat. Electron. 4, 399–404 (2021).

    CAS  Google Scholar 

  37. Liu, C. et al. Small footprint transistor architecture for photoswitching logic and in situ memory. Nat. Nanotechnol. 14, 662–667 (2019).

    CAS  Google Scholar 

  38. Wu, P., Reis, D., Hu, X. S. & Appenzeller, J. Two-dimensional transistors with reconfigurable polarities for secure circuits. Nat. Electron. 4, 45–53 (2021).

    CAS  Google Scholar 

  39. Sachid, A. B. et al. Monolithic 3D CMOS using layered semiconductors. Adv. Mater. 28, 2547–2554 (2016).

    CAS  Google Scholar 

  40. Dodda, A. et al. Graphene-based physically unclonable functions that are reconfigurable and resilient to machine learning attacks. Nat. Electron. 4, 364–374 (2021).

    CAS  Google Scholar 

  41. Lin, Y.-M. et al. Wafer-scale graphene integrated circuit. Science 332, 1294–1297 (2011).

    CAS  Google Scholar 

  42. Cheng, R. et al. Few-layer molybdenum disulfide transistors and circuits for high-speed flexible electronics. Nat. Commun. 5, 5143 (2014).

    CAS  Google Scholar 

  43. Seo, S.-Y. et al. Writing monolithic integrated circuits on a two-dimensional semiconductor with a scanning light probe. Nat. Electron. 1, 512–517 (2018).

    CAS  Google Scholar 

  44. Hong, S. et al. Highly sensitive active pixel image sensor array driven by large-area bilayer MoS2 transistor circuitry. Nat. Commun. 12, 3559 (2021).

    CAS  Google Scholar 

  45. Marega, G. M. et al. Logic-in-memory based on an atomically thin semiconductor. Nature 587, 72–77 (2020).

    Google Scholar 

  46. Feng, X. et al. Self-selective multi-terminal memtransistor crossbar array for in-memory computing. ACS Nano 15, 1764–1774 (2021).

    CAS  Google Scholar 

  47. Chen, S. et al. Wafer-scale integration of two-dimensional materials in high-density memristive crossbar arrays for artificial neural networks. Nat. Electron. 3, 638–645 (2020).

    CAS  Google Scholar 

  48. Mennel, L. et al. Ultrafast machine vision with 2D material neural network image sensors. Nature 579, 62–66 (2020).

    CAS  Google Scholar 

  49. Ma, S. et al. An artificial neural network chip based on two-dimensional semiconductor. Sci. Bull. 67, 270–277 (2021).

    Google Scholar 

  50. Tong, L. et al. 2D materials-based homogeneous transistor–memory architecture for neuromorphic hardware. Science 373, 1353–1358 (2021).

    CAS  Google Scholar 

  51. Jiang, J., Parto, K., Cao, W. & Banerjee, K. Ultimate monolithic-3D integration with 2D materials: rationale, prospects, and challenges. IEEE J. Electron Devices Soc. 7, 878–887 (2019).

    Google Scholar 

  52. Jiang, J., Chu, J. H. & Banerjee, K. CMOS-compatible doped-multilayer-graphene interconnects for next-generation VLSI. In 2018 IEEE International Electron Devices Meeting (IEDM) 34.35.31–34.35.34 (IEEE, 2018).

  53. Pal, A. et al. Two-dimensional materials enabled next-generation low-energy compute and connectivity. MRS Bull. 46, 1211–1228 (2021).

    Google Scholar 

  54. Goossens, S. et al. Broadband image sensor array based on graphene–CMOS integration. Nat. Photon. 11, 366–371 (2017).

    CAS  Google Scholar 

  55. Yang, C.-C. et al. Enabling monolithic 3D image sensor using large-area monolayer transition metal dichalcogenide and logic/memory hybrid 3D + IC. In 2016 IEEE Symposium on VLSI Technology (VLSI) 1–2 (IEEE, 2016).

  56. Hong, S. K., Kim, C. S., Hwang, W. S. & Cho, B. J. Hybrid integration of graphene analog and silicon complementary metal–oxide–semiconductor digital circuits. ACS Nano 10, 7142–7146 (2016).

    CAS  Google Scholar 

  57. Das, S. et al. Transistors based on two-dimensional materials for future integrated circuits. Nat. Electron. 4, 786–799 (2021).

    CAS  Google Scholar 

  58. Zhu, K. et al. The development of integrated circuits based on two-dimensional materials. Nat. Electron. 4, 775–785 (2021).

    CAS  Google Scholar 

  59. Wang, C.-H. et al. 3D monolithic stacked 1T1R cells using monolayer MoS2 FET and hBN RRAM fabricated at low (150 °C) temperature. In 2018 IEEE International Electron Devices Meeting (IEDM) 22.5.1–22.5.4 (IEEE, 2018).

  60. Sivan, M. et al. All WSe2 1T1R resistive RAM cell for future monolithic 3D embedded memory integration. Nat. Commun. 10, 5201 (2019).

    Google Scholar 

  61. Kim, Y. et al. Atomic-layer-deposition-based 2D transition metal chalcogenides: synthesis, modulation, and applications. Adv. Mater. 33, 2005907 (2021).

    CAS  Google Scholar 

  62. Kang, K. et al. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520, 656–660 (2015).

    CAS  Google Scholar 

  63. Liu, C. et al. Kinetic modulation of graphene growth by fluorine through spatially confined decomposition of metal fluorides. Nat. Chem. 11, 730–736 (2019).

    CAS  Google Scholar 

  64. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    CAS  Google Scholar 

  65. Li, T. et al. Epitaxial growth of wafer-scale molybdenum disulfide semiconductor single crystals on sapphire. Nat. Nanotechnol. 16, 1201–1207 (2021).

    CAS  Google Scholar 

  66. Zhang, F. et al. Carbon doping of WS2 monolayers: bandgap reduction and p-type doping transport. Sci. Adv. 5, eaav5003 (2019).

    CAS  Google Scholar 

  67. Murai, Y. et al. Versatile post-doping toward two-dimensional semiconductors. ACS Nano 15, 19225–19232 (2021).

    CAS  Google Scholar 

  68. Kim, J. K. et al. Molecular dopant-dependent charge transport in surface-charge-transfer-doped tungsten diselenide field effect transistors. Adv. Mater. 33, 2101598 (2021).

    CAS  Google Scholar 

  69. Lee, D. et al. Remote modulation doping in van der Waals heterostructure transistors. Nat. Electron. 4, 664–670 (2021).

    CAS  Google Scholar 

  70. Yang, P. et al. Batch production of 6-inch uniform monolayer molybdenum disulfide catalyzed by sodium in glass. Nat. Commun. 9, 979 (2018).

    Google Scholar 

  71. Cheng, Z. et al. Are 2D interfaces really flat? ACS Nano 16, 5316–5324 (2022).

    CAS  Google Scholar 

  72. Jain, A. et al. Minimizing residues and strain in 2D materials transferred from PDMS. Nanotechnology 29, 265203 (2018).

    Google Scholar 

  73. Quellmalz, A. et al. Large-area integration of two-dimensional materials and their heterostructures by wafer bonding. Nat. Commun. 12, 917 (2021).

    CAS  Google Scholar 

  74. Phommahaxay, A. et al. The growing application field of laser debonding: from advanced packaging to future nanoelectronics. In 2019 International Wafer Level Packaging Conference (IWLPC) 1–8 (IEEE, 2019).

  75. Kobayashi, T. et al. Production of a 100-m-long high-quality graphene transparent conductive film by roll-to-roll chemical vapor deposition and transfer process. Appl. Phys. Lett. 102, 023112 (2013).

    Google Scholar 

  76. English, C. D., Shine, G., Dorgan, V. E., Saraswat, K. C. & Pop, E. Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition. Nano Lett. 16, 3824–3830 (2016).

    CAS  Google Scholar 

  77. Wang, Y. et al. Van der Waals contacts between three-dimensional metals and two-dimensional semiconductors. Nature 568, 70–74 (2019).

    CAS  Google Scholar 

  78. Wang, J. et al. Transferred metal gate to 2D semiconductors for sub-1 V operation and near ideal subthreshold slope. Sci. Adv. 7, eabf8744 (2021).

    CAS  Google Scholar 

  79. Liu, Y. et al. Approaching the Schottky–Mott limit in van der Waals metal–semiconductor junctions. Nature 557, 696–700 (2018).

    CAS  Google Scholar 

  80. Chou, A.-S. et al. High on-state current in chemical vapor deposited monolayer MoS2 nFETs with Sn ohmic contacts. IEEE Electron Device Lett. 42, 272–275 (2020).

    Google Scholar 

  81. Chou, A.-S. et al. Antimony semimetal contact with enhanced thermal stability for high performance 2D electronics. In 2021 IEEE International Electron Devices Meeting (IEDM) 7.2.1–7.2.4 (IEEE, 2021).

  82. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    CAS  Google Scholar 

  83. Illarionov, Y. Y. et al. Insulators for 2D nanoelectronics: the gap to bridge. Nat. Commun. 11, 3385 (2020).

    CAS  Google Scholar 

  84. Li, W. et al. Uniform and ultrathin high-κ gate dielectrics for two-dimensional electronic devices. Nat. Electron. 2, 563–571 (2019).

    CAS  Google Scholar 

  85. Britnell, L. et al. Electron tunneling through ultrathin boron nitride crystalline barriers. Nano Lett. 12, 1707–1710 (2012).

    CAS  Google Scholar 

  86. Li, T. et al. A native oxide high-κ gate dielectric for two-dimensional electronics. Nat. Electron. 3, 473–478 (2020).

    CAS  Google Scholar 

  87. Liu, K. et al. A wafer-scale van der Waals dielectric made from an inorganic molecular crystal film. Nat. Electron. 4, 906–913 (2021).

    CAS  Google Scholar 

  88. Illarionov, Y. Y. et al. Ultrathin calcium fluoride insulators for two-dimensional field-effect transistors. Nat. Electron. 2, 230–235 (2019).

    CAS  Google Scholar 

  89. Huang, J.-K. et al. High-κ perovskite membranes as insulators for two-dimensional transistors. Nature 605, 262–267 (2022).

    CAS  Google Scholar 

  90. Hwang, A. et al. Visible and infrared dual-band imaging via Ge/MoS2 van der Waals heterostructure. Sci. Adv. 7, eabj2521 (2021).

    CAS  Google Scholar 

  91. Lanza, M., Smets, Q., Huyghebaert, C. & Li, L.-J. Yield, variability, reliability, and stability of two-dimensional materials based solid-state electronic devices. Nat. Commun. 11, 5689 (2020).

    CAS  Google Scholar 

  92. Cheng, Z. et al. How to report and benchmark emerging field-effect transistors. Nat. Electron 5, 416–423 (2022).

    Google Scholar 

  93. Yu, L. et al. High-yield large area MoS2 technology: material, device and circuits co-optimization. In 2016 IEEE International Electron Devices Meeting (IEDM) 5.7.1–5.7.4 (IEEE, 2016).

  94. Waltl, M. et al. Perspective of 2D integrated electronic circuits: scientific pipe dream or disruptive technology? Adv. Mater. https://doi.org/10.1002/adma.202201082 (2022).

  95. Holler, M. et al. High-resolution non-destructive three-dimensional imaging of integrated circuits. Nature 543, 402–406 (2017).

    CAS  Google Scholar 

  96. Liu, L. et al. Ultrafast non-volatile flash memory based on van der Waals heterostructures. Nat. Nanotechnol. 16, 874–881 (2021).

    CAS  Google Scholar 

  97. Feldmann, J., Youngblood, N., Wright, C. D., Bhaskaran, H. & Pernice, W. H. P. All-optical spiking neurosynaptic networks with self-learning capabilities. Nature 569, 208–214 (2019).

    CAS  Google Scholar 

  98. Romagnoli, M. et al. Graphene-based integrated photonics for next-generation datacom and telecom. Nat. Rev. Mater. 3, 392–414 (2018).

    CAS  Google Scholar 

  99. Kang, K. et al. Layer-by-layer assembly of two-dimensional materials into wafer-scale heterostructures. Nature 550, 229–233 (2017).

    Google Scholar 

  100. Li, N. et al. Large-scale flexible and transparent electronics based on monolayer molybdenum disulfide field-effect transistors. Nat. Electron. 3, 711–717 (2020).

    CAS  Google Scholar 

  101. Kim, M. et al. Zero-static power radio-frequency switches based on MoS2 atomristors. Nat. Commun. 9, 2524 (2018).

    Google Scholar 

  102. Ge, R. et al. Atomristor: nonvolatile resistance switching in atomic sheets of transition metal dichalcogenides. Nano Lett. 18, 434–441 (2018).

    CAS  Google Scholar 

  103. Wang, H.-C. et al. Hydrogen plasma-treated MoSe2 nanosheets enhance the efficiency and stability of organic photovoltaics. Nanoscale 11, 17460–17470 (2019).

    CAS  Google Scholar 

  104. You, P., Tang, G. & Yan, F. Two-dimensional materials in perovskite solar cells. Mater. Today Energy 11, 128–158 (2019).

    CAS  Google Scholar 

  105. Wang, T. Y. et al. Ultralow power wearable heterosynapse with photoelectric synergistic modulation. Adv. Sci. 7, 1903480 (2020).

    CAS  Google Scholar 

  106. Wang, Y. et al. High on/off ratio black phosphorus based memristor with ultrathin phosphorus oxide layer. Appl. Phys. Lett. 115, 193503 (2019).

    Google Scholar 

  107. Shen, Y. et al. Variability and yield in h-BN-based memristive circuits: the role of each type of defect. Adv. Mater. 33, 2103656 (2021).

    CAS  Google Scholar 

  108. Zomer, P., Dash, S., Tombros, N. & Van Wees, B. A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Appl. Phys. Lett. 99, 232104 (2011).

    Google Scholar 

  109. Kappera, R. et al. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13, 1128–1134 (2014).

    CAS  Google Scholar 

  110. Larentis, S., Fallahazad, B. & Tutuc, E. Field-effect transistors and intrinsic mobility in ultrathin MoSe2 layers. Appl. Phys. Lett. 101, 223104 (2012).

    Google Scholar 

  111. Kelly, A. G. et al. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356, 69–73 (2017).

    CAS  Google Scholar 

  112. De Fazio, D. et al. High-mobility, wet-transferred graphene grown by chemical vapor deposition. ACS Nano 13, 8926–8935 (2019).

    Google Scholar 

  113. Liu, L. et al. Uniform nucleation and epitaxy of bilayer molybdenum disulfide on sapphire. Nature 605, 69–75 (2022).

    CAS  Google Scholar 

  114. Chang, Y.-H. et al. Monolayer MoSe2 grown by chemical vapor deposition for fast photodetection. ACS Nano 8, 8582–8590 (2014).

    CAS  Google Scholar 

  115. Poh, S. M. et al. Molecular beam epitaxy of highly crystalline MoSe2 on hexagonal boron nitride. ACS Nano 12, 7562–7570 (2018).

    CAS  Google Scholar 

  116. Kim, Y. et al. Self-limiting layer synthesis of transition metal dichalcogenides. Sci. Rep. 6, 18754 (2016).

    CAS  Google Scholar 

  117. Manzeli, S., Ovchinnikov, D., Pasquier, D., Yazyev, O. V. & Kis, A. 2D transition metal dichalcogenides. Nat. Rev. Mater. 2, 17033 (2017).

    CAS  Google Scholar 

  118. Akinwande, D. et al. Graphene and two-dimensional materials for silicon technology. Nature 573, 507–518 (2019).

    CAS  Google Scholar 

  119. Zeng, S., Tang, Z., Liu, C. & Zhou, P. Electronics based on two-dimensional materials: status and outlook. Nano Res. 14, 1752–1767 (2021).

    Google Scholar 

  120. Larrieu, G., Guerfi, Y., Han, X. & Clément, N. Sub-15-nm gate-all-around field effect transistors on vertical silicon nanowires. Solid State Electron 130, 9–14 (2017).

    CAS  Google Scholar 

  121. Long, M., Wang, P., Fang, H. & Hu, W. Progress, challenges, and opportunities for 2D material based photodetectors. Adv. Funct. Mater. 29, 1803807 (2019).

    Google Scholar 

  122. Fang, Z., Chen, Q. Y. & Zhao, C. Z. A review of recent progress in lasers on silicon. Opt. Laser Technol. 46, 103–110 (2013).

    CAS  Google Scholar 

  123. You, J. et al. Hybrid/integrated silicon photonics based on 2D materials in optical communication nanosystems. Laser Photon. Rev. 14, 2000239 (2020).

    CAS  Google Scholar 

  124. Tian, H., Wang, X., Wu, F., Yang, Y. & Ren, T. -L. High performance 2D perovskite/graphene optical synapses as artificial eyes. In 2018 IEEE International Electron Devices Meeting (IEDM) 38.36.31–38.36.34 (IEEE, 2018).

  125. Liu, D. S., Wu, J., Xu, H. & Wang, Z. Emerging light-emitting materials for photonic integration. Adv. Mater. 33, 2003733 (2021).

    CAS  Google Scholar 

  126. Tan, T., Jiang, X., Wang, C., Yao, B. & Zhang, H. 2D material optoelectronics for information functional device applications: status and challenges. Adv. Sci. 7, 2000058 (2020).

    CAS  Google Scholar 

  127. Liu, C. et al. Silicon/2D-material photodetectors: from near-infrared to mid-infrared. Light Sci. Appl. 10, 123 (2021).

    CAS  Google Scholar 

  128. García de Arquer, F. P., Armin, A., Meredith, P. & Sargent, E. H. Solution-processed semiconductors for next-generation photodetectors. Nat. Rev. Mater. 2, 16100 (2017).

    Google Scholar 

  129. Schram, T. et al. WS2 transistors on 300 mm wafers with BEOL compatibility. In 2017 47th European Solid-State Device Research Conference (ESSDERC) 212–215 (IEEE, 2017).

  130. Asselberghs, I. et al. Scaled transistors with 2D materials from the 300mm fab. In 2020 IEEE Silicon Nanoelectronics Workshop (SNW) 67–68 (IEEE, 2020).

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2021YFA1200500), National Natural Science Foundation of China (61925402 and 62090032) and Science and Technology Commission of Shanghai Municipality (19JC1416600).

Author information

Authors and Affiliations

Authors

Contributions

S.W., X.L., M.X. and L.L. co-wrote the manuscript. P.Z. conceived the idea and supervised the review. D.Y. provided valuable input to the overall process. All authors provided suggestions for revisions and improvements to the review.

Corresponding author

Correspondence to Peng Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Jian-Bin Xu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Liu, X., Xu, M. et al. Two-dimensional devices and integration towards the silicon lines. Nat. Mater. 21, 1225–1239 (2022). https://doi.org/10.1038/s41563-022-01383-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01383-2

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing