Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

A data-science approach to predict the heat capacity of nanoporous materials

Abstract

The heat capacity of a material is a fundamental property of great practical importance. For example, in a carbon capture process, the heat required to regenerate a solid sorbent is directly related to the heat capacity of the material. However, for most materials suitable for carbon capture applications, the heat capacity is not known, and thus the standard procedure is to assume the same value for all materials. In this work, we developed a machine learning approach, trained on density functional theory simulations, to accurately predict the heat capacity of these materials, that is, zeolites, metal–organic frameworks and covalent–organic frameworks. The accuracy of our prediction is confirmed with experimental data. Finally, for a temperature swing adsorption process that captures carbon from the flue gas of a coal-fired power plant, we show that for some materials, the heat requirement is reduced by as much as a factor of two using the correct heat capacity.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Temperature dependence of the heat capacity of MOF-74.
Fig. 2: Structure/heat-capacity relationships.
Fig. 3: DFT and machine learning predictions of the heat capacity.
Fig. 4: Mapping the heat capacity of nanoporous materials.
Fig. 5: The role of heat capacity in the performance and ranking of porous materials in carbon capture.

Similar content being viewed by others

Data availability

Supplementary Information, containing details of the theoretical aspects, machine learning methodology, experimental measurements and process modelling, is available for this paper. In addition, the crystal structures of the training set together with the DFT-optimized geometries and the corresponding calculated thermal properties; tabulated heat capacity of the MOFs in the CoRE-MOF34 and QMOF38 databases, zeolites in IZA36 and COFs in CURATED-COF35 at different temperatures; the data that were used and are needed to reproduce the results of this study, the thermogravimetric analysis, the synthesis protocols, and the powder X-ray diffraction, exported from electronic lab notebooks; and the codes to generate the figures of the paper are deposited on the Materials Cloud51 archive and can be accessed at https://doi.org/10.24435/materialscloud:p1-2y. Correspondence and requests for additional materials should be addressed to the corresponding authors.

Code availability

The featurization, prediction and trained models are available from https://github.com/SeyedMohamadMoosavi/tools-cp-porousmat.

References

  1. Furukawa, H., Cordova, K. E., O’Keeffe, M. & Yaghi, O. M. The chemistry and applications of metal-organic frameworks. Science 341, 1230444–1230456 (2013).

    Article  Google Scholar 

  2. Bavykina, A. et al. Metal–organic frameworks in heterogeneous catalysis: recent progress, new trends, and future perspectives. Chem. Rev. 120, 8468–8535 (2020).

    Article  CAS  Google Scholar 

  3. Rosen, A. S., Notestein, J. M. & Snurr, R. Q. Realizing the data-driven, computational discovery of metal-organic framework catalysts. Curr. Opin. Chem. Eng. 35, 100760 (2022).

    Article  Google Scholar 

  4. Boyd, P. G. et al. Data-driven design of metal–organic frameworks for wet flue gas CO2 capture. Nature 576, 253–256 (2019).

    Article  CAS  Google Scholar 

  5. Chen, Z. et al. Balancing volumetric and gravimetric uptake in highly porous materials for clean energy. Science 368, 297–303 (2020).

    Article  CAS  Google Scholar 

  6. Diercks, C. S., Liu, Y., Cordova, K. E. & Yaghi, O. M. The role of reticular chemistry in the design of CO2 reduction catalysts. Nat. Mater. 17, 301–307 (2018).

    Article  CAS  Google Scholar 

  7. Farmahini, A. H., Friedrich, D., Brandani, S. & Sarkisov, L. Exploring new sources of efficiency in process-driven materials screening for post-combustion carbon capture. Energy Environ. Sci. 13, 1018–1037 (2020).

    Article  Google Scholar 

  8. Mason, J. A., Sumida, K., Herm, Z. R., Krishna, R. & Long, J. R. Evaluating metal–organic frameworks for post-combustion carbon dioxide capture via temperature swing adsorption. Energy Environ. Sci. 4, 3030–3040 (2011).

    Article  CAS  Google Scholar 

  9. Nandy, A., Duan, C. & Kulik, H. J. Using machine learning and data mining to leverage community knowledge for the engineering of stable metal–organic frameworks. J. Am. Chem. Soc. 143, 17535–17547 (2021).

    Article  CAS  Google Scholar 

  10. Subraveti, S. G., Roussanaly, S., Anantharaman, R., Riboldi, L. & Rajendran, A. How much can novel solid sorbents reduce the cost of post-combustion CO2 capture? A techno-economic investigation on the cost limits of pressure–vacuum swing adsorption. Appl. Energy 306, 117955 (2022).

    Article  CAS  Google Scholar 

  11. Huck, J. M. et al. Evaluating different classes of porous materials for carbon capture. Energy Environ. Sci. 7, 4132–4146 (2014).

    Article  CAS  Google Scholar 

  12. Farmahini, A. H., Krishnamurthy, S., Friedrich, D., Brandani, S. & Sarkisov, L. Performance-based screening of porous materials for carbon capture. Chem. Rev. 121, 10666–10741 (2021).

    Article  CAS  Google Scholar 

  13. Mu, B. & Walton, K. S. Thermal analysis and heat capacity study of metal–organic frameworks. J. Phys. Chem. C 115, 22748–22754 (2011).

    Article  CAS  Google Scholar 

  14. Kloutse, F. A., Zacharia, R., Cossement, D. & Chahine, R. Specific heat capacities of MOF-5, Cu-BTC, Fe-BTC, MOF-177 and MIL-53 (Al) over wide temperature ranges: measurements and application of empirical group contribution method. Microporous Mesoporous Mater. 217, 1–5 (2015).

    Article  CAS  Google Scholar 

  15. Kapil, V. et al. Modeling the structural and thermal properties of loaded metal–organic frameworks. An interplay of quantum and anharmonic fluctuations. J. Chem. Theory Comput. 15, 3237–3249 (2019).

    Article  CAS  Google Scholar 

  16. Wieme, J. et al. Thermal engineering of metal–organic frameworks for adsorption applications: a molecular simulation perspective. ACS Appl. Mater. Interfaces 11, 38697–38707 (2019).

    Article  CAS  Google Scholar 

  17. Caskey, S. R., Wong-Foy, A. G. & Matzger, A. J. Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores. J. Am. Chem. Soc. 130, 10870–10871 (2008).

    Article  CAS  Google Scholar 

  18. Queen, W. L. et al. Comprehensive study of carbon dioxide adsorption in the metal–organic frameworks M2(dobdc) (M = Mg, Mn, Fe, Co, Ni, Cu, Zn). Chem. Sci. 5, 4569–4581 (2014).

    Article  CAS  Google Scholar 

  19. Boyd, P. G., Moosavi, S. M., Witman, M. & Smit, B. Force-field prediction of materials properties in metal-organic frameworks. J. Phys. Chem. Lett. 8, 357–363 (2017).

    Article  CAS  Google Scholar 

  20. Moghadam, P. Z. et al. Structure-mechanical stability relations of metal-organic frameworks via machine learning. Matter 1, 219–234 (2019).

    Article  Google Scholar 

  21. Moosavi, S. M., Boyd, P. G., Sarkisov, L. & Smit, B. Improving the mechanical stability of metal–organic frameworks using chemical caryatids. ACS Cent. Sci. 4, 832–839 (2018).

    Article  CAS  Google Scholar 

  22. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Big-data science in porous materials: materials genomics and machine learning. Chem. Rev. 120, 8066–8129 (2020).

    Article  CAS  Google Scholar 

  23. Rahimi, M., Moosavi, S. M., Smit, B. & Hatton, T. A. Toward smart carbon capture with machine learning. Cell Rep. Phys. Sci. 2, 100396 (2021).

    Article  CAS  Google Scholar 

  24. Tawfik, S. A., Isayev, O., Spencer, M. J. S. & Winkler, D. A. Predicting thermal properties of crystals using machine learning. Adv. Theory Simul. 3, 1900208 (2020).

    Article  CAS  Google Scholar 

  25. Legrain, F., Carrete, J., van Roekeghem, A., Curtarolo, S. & Mingo, N. How chemical composition alone can predict vibrational free energies and entropies of solids. Chem. Mater. 29, 6220–6227 (2017).

    Article  CAS  Google Scholar 

  26. Ducamp, M. & Coudert, F.-X. Prediction of thermal properties of zeolites through machine learning. J. Phys. Chem. C 126, 1651–1660 (2022).

    Article  CAS  Google Scholar 

  27. Chen, Z. et al. Direct prediction of phonon density of states with euclidean neural networks. Adv. Sci. 8, 2004214 (2021).

    Article  CAS  Google Scholar 

  28. Kauwe, S. K., Graser, J., Vazquez, A. & Sparks, T. D. Machine learning prediction of heat capacity for solid inorganics. Integrating Mater. Manuf. Innov. 7, 43–51 (2018).

    Article  Google Scholar 

  29. Petretto, G. et al. High-throughput density-functional perturbation theory phonons for inorganic materials. Sci. Data 5, 180065 (2018).

    Article  CAS  Google Scholar 

  30. Ward, L. et al. Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations. Phys. Rev. B 96, 024104 (2017).

    Article  Google Scholar 

  31. Jablonka, K. M., Ongari, D., Moosavi, S. M. & Smit, B. Using collective knowledge to assign oxidation states of metal cations in metal–organic frameworks. Nat. Chem. 13, 771–777 (2021).

    Article  CAS  Google Scholar 

  32. Behler, J. & Parrinello, M. Generalized neural-network representation of high-dimensional potential-energy surfaces. Phys. Rev. Lett. 98, 146401 (2007).

    Article  Google Scholar 

  33. Botu, V., Batra, R., Chapman, J. & Ramprasad, R. Machine learning force fields: construction, validation, and outlook. J. Phys. Chem. C 121, 511–522 (2017).

    Article  CAS  Google Scholar 

  34. Chung, Y. G. et al. Advances, updates, and analytics for the computation-ready, experimental metal–organic framework database: CoRE MOF 2019. J. Chem. Eng. Data 64, 5985–5998 (2019).

    Article  CAS  Google Scholar 

  35. Ongari, D., Yakutovich, A. V., Talirz, L. & Smit, B. Building a consistent and reproducible database for adsorption evaluation in covalent–organic frameworks. ACS Cent. Sci. 5, 1663–1675 (2019).

    Article  CAS  Google Scholar 

  36. Baerlocher, C. & McCusker, C. IZA: Database of Zeolite Structures (International Zeolite Association, accessed September 2021); http://www.iza-structure.org/databases/

  37. Ming, Y. et al. Thermophysical properties of MOF-5 powders. Microporous Mesoporous Mater. 185, 235–244 (2014).

    Article  CAS  Google Scholar 

  38. Rosen, A. S. et al. Machine learning the quantum-chemical properties of metal–organic frameworks for accelerated materials discovery. Matter 4, 1578–1597 (2021).

    Article  CAS  Google Scholar 

  39. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  40. Grimme, S., Ehrlich, S. & Goerigk, L. Effect of the damping function in dispersion corrected density functional theory. J. Comput. Chem. 32, 1456–1465 (2011).

    Article  CAS  Google Scholar 

  41. Goedecker, S., Teter, M. & Hutter, J. Separable dual-space Gaussian pseudopotentials. Phys. Rev. B 54, 1703–1710 (1996).

    Article  CAS  Google Scholar 

  42. Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).

    Article  CAS  Google Scholar 

  43. Hutter, J., Iannuzzi, M., Schiffmann, F. & VandeVondele, J. cp2k: atomistic simulations of condensed matter systems. Wiley Interdiscip. Rev. Comput. Mol. Sci. 4, 15–25 (2014).

    Article  CAS  Google Scholar 

  44. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  45. Carreras, A. phonoLAMMPS: a python interface for LAMMPS phonon calculations using phonopy. Zenodo https://doi.org/10.5281/zenodo.3940626 (2020).

  46. Ward, L. et al. Matminer: an open source toolkit for materials data mining. Comput. Mater. Sci. 152, 60–69 (2018).

    Article  Google Scholar 

  47. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comput. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  48. Chen, T. & Guestrin, C. XGBoost: a scalable tree boosting system. In Proc. 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining https://doi.org/10.1145/2939672.2939785 (Association for Computing Machinery, New York, 2016).

  49. Pedregosa, F. et al. Scikit-learn: machine learning in python. J. Mach. Learn. Res. 12, 2825–2830 (2011).

    Google Scholar 

  50. Ajenifuja, A., Joss, L. & Jobson, M. A new equilibrium shortcut temperature swing adsorption model for fast adsorbent screening. Ind. Eng. Chem. Res. 59, 3485–3497 (2020).

    Article  CAS  Google Scholar 

  51. Talirz, L. et al. Materials cloud, a platform for open computational science. Sci. Data 7, 299 (2020).

Download references

Acknowledgements

We acknowledge support from the Accelerating Carbon Capture and Sequestration Technologies PrISMa Project (no. 299659), which has received funding through the Accelerating Carbon Capture and Storage Technologies programme (Horizon2020 project no. 294766). We gratefully acknowledge financial contributions made from the Department for Business, Energy & Industrial Strategy together with extra funding from the Natural Environment Research Council and Engineering and Physical Sciences Research Council, United Kingdom; The Research Council of Norway; Swiss Federal Office of Energy; and the United States Department of Energy. We also gratefully acknowledge additional financial support from Total and Equinor. S.M.M. was supported by the Swiss National Science Foundation under grant no. P2ELP2_195155. M.A. was supported by the Swiss National Science Foundation under grant no. P2ELP2_195134. C.C. was supported by the Industrial Strategy Challenge Fund from UK Research and Innovation Industrial Challenge within the UK Industrial Decarbonisation Research and Innovation Centre award no. EP/V027050/1. F.N. acknowledges funding from the European Commission (ERC CoG 772230), the Bundesministerium für Bildung und Forschung (research centre Berlin’s AI competence centre the Berlin Institute for the Foundations of Learning and Data), and the Berlin Mathematics Center MATH+ (AA2-8). The calculations of this work were enabled by the Swiss National Supercomputing Centre under project no. s1019. S.M.M. and B.A.N. thank M. J. Pougin for making the experimental MOF structures computation ready. S.M.M. thanks L. Talirz and M. Sadeghi for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

S.M.M., A.H.F., C.C., L.S., S.G. and B.S. formulated the scientific problem and the engineering context. S.M.M. developed the machine learning framework with the help of F.N.; S.M.M., D.O., Ö.K. and A.O.-G. performed the heat capacity calculations. E.M., C.C. and S.G. performed the process modelling. B.A.N. and M.A. synthesized the MOFs and measured the heat capacities. All authors contributed to the analysis and discussion of the results. S.M.M. and B.S. wrote the paper with the contribution of all authors.

Corresponding authors

Correspondence to Seyed Mohamad Moosavi or Berend Smit.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Tables 1–3, Discussion and refs. 1–46.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moosavi, S.M., Novotny, B.Á., Ongari, D. et al. A data-science approach to predict the heat capacity of nanoporous materials. Nat. Mater. 21, 1419–1425 (2022). https://doi.org/10.1038/s41563-022-01374-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01374-3

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing