Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Designed growth of large bilayer graphene with arbitrary twist angles

Abstract

The production of large-area twisted bilayer graphene (TBG) with controllable angles is a prerequisite for proceeding with its massive applications. However, most of the prevailing strategies to fabricate twisted bilayers face great challenges, where the transfer methods are easily stuck by interfacial contamination, and direct growth methods lack the flexibility in twist-angle design. Here we develop an effective strategy to grow centimetre-scale TBG with arbitrary twist angles (accuracy, <1.0°). The success in accurate angle control is realized by an angle replication from two prerotated single-crystal Cu(111) foils to form a Cu/TBG/Cu sandwich structure, from which the TBG can be isolated by a custom-developed equipotential surface etching process. The accuracy and consistency of the twist angles are unambiguously illustrated by comprehensive characterization techniques, namely, optical spectroscopy, electron microscopy, photoemission spectroscopy and photocurrent spectroscopy. Our work opens an accessible avenue for the designed growth of large-scale two-dimensional twisted bilayers and thus lays the material foundation for the future applications of twistronics at the integration level.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Schematic for the growth design of TBG.
Fig. 2: Twist-angle replication from the rotated Cu foils.
Fig. 3: Characterizations of TBG.
Fig. 4: Angle tunability in TBG.

Similar content being viewed by others

Data availability

Source data are provided with this paper. All other data that support the findings of this study are available within the Article and the Supplementary Information.

References

  1. Li, G. et al. Observation of Van Hove singularities in twisted graphene layers. Nat. Phys. 6, 109–113 (2009).

    Google Scholar 

  2. Yan, W. et al. Angle-dependent Van Hove singularities in a slightly twisted graphene bilayer. Phys. Rev. Lett. 109, 126801 (2012).

    Google Scholar 

  3. Brihuega, I. et al. Unraveling the intrinsic and robust nature of Van Hove singularities in twisted bilayer graphene by scanning tunneling microscopy and theoretical analysis. Phys. Rev. Lett. 109, 196802 (2012).

    CAS  Google Scholar 

  4. Zhang, Y.-H. et al. Nearly flat Chern bands in moiré superlattices. Phys. Rev. B 99, 075127 (2019).

    CAS  Google Scholar 

  5. Sharpe, A. L. et al. Emergent ferromagnetism near three-quarters filling in twisted bilayer graphene. Science 365, 605–608 (2019).

    CAS  Google Scholar 

  6. Serlin, M. et al. Intrinsic quantized anomalous Hall effect in a moiré heterostructure. Science 367, 900–903 (2020).

    CAS  Google Scholar 

  7. Cao, Y. et al. Unconventional superconductivity in magic-angle graphene superlattices. Nature 556, 43–50 (2018).

    CAS  Google Scholar 

  8. Yankowitz, M. et al. Tuning superconductivity in twisted bilayer graphene. Science 363, 1059–1064 (2019).

    CAS  Google Scholar 

  9. Roy, B. & Juričić, V. Unconventional superconductivity in nearly flat bands in twisted bilayer graphene. Phys. Rev. B 99, 121407 (2019).

    CAS  Google Scholar 

  10. Cao, Y. et al. Correlated insulator behaviour at half-filling in magic-angle graphene superlattices. Nature 556, 80–84 (2018).

    CAS  Google Scholar 

  11. Lu, X. et al. Superconductors, orbital magnets and correlated states in magic-angle bilayer graphene. Nature 574, 653–657 (2019).

    CAS  Google Scholar 

  12. Codecido, E. et al. Correlated insulating and superconducting states in twisted bilayer graphene below the magic angle. Sci. Adv. 5, eaaw9770 (2019).

    CAS  Google Scholar 

  13. Castellanos-Gomez, A. et al. Deterministic transfer of two-dimensional materials by all-dry viscoelastic stamping. 2D Mater. 1, 011002 (2014).

    CAS  Google Scholar 

  14. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS  Google Scholar 

  15. Robinson, J. T. et al. Electronic hybridization of large-area stacked graphene films. ACS Nano 7, 637–644 (2013).

    CAS  Google Scholar 

  16. Nguyen, V. L. et al. Wafer-scale single-crystalline AB-stacked bilayer graphene. Adv. Mater. 28, 8177–8183 (2016).

    CAS  Google Scholar 

  17. Zhang, J. et al. Free folding of suspended graphene sheets by random mechanical stimulation. Phys. Rev. Lett. 104, 166805 (2010).

    Google Scholar 

  18. Wang, B. et al. Controlled folding of single crystal graphene. Nano Lett. 17, 1467–1473 (2017).

    CAS  Google Scholar 

  19. Carozo, V. et al. Resonance effects on the Raman spectra of graphene superlattices. Phys. Rev. B 88, 085401 (2013).

    Google Scholar 

  20. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    CAS  Google Scholar 

  21. Chen, H. et al. Atomically precise, custom-design origami graphene nanostructures. Science 365, 1036–1040 (2019).

    CAS  Google Scholar 

  22. Sun, L. et al. Hetero-site nucleation for growing twisted bilayer graphene with a wide range of twist angles. Nat. Commun. 12, 2391 (2021).

    CAS  Google Scholar 

  23. Cho, H. et al. Specific stacking angles of bilayer graphene grown on atomic-flat and -stepped Cu surfaces. npj 2D Mater. Appl. 4, 35 (2020).

    CAS  Google Scholar 

  24. Chen, Y.-C. et al. Direct growth of mm-size twisted bilayer graphene by plasma-enhanced chemical vapor deposition. Carbon 156, 212–224 (2020).

    CAS  Google Scholar 

  25. Yan, Z. et al. Large hexagonal bi- and trilayer graphene single crystals with varied interlayer rotations. Angew. Chem. Int. Ed. 53, 1565–1569 (2014).

    CAS  Google Scholar 

  26. Pezzini, S. et al. 30°-twisted bilayer graphene quasicrystals from chemical vapor deposition. Nano Lett. 20, 3313–3319 (2020).

    CAS  Google Scholar 

  27. Zhou, H. et al. Chemical vapour deposition growth of large single crystals of monolayer and bilayer graphene. Nat. Commun. 4, 2096 (2013).

    Google Scholar 

  28. Ma, W. et al. Interlayer epitaxy of wafer-scale high-quality uniform AB-stacked bilayer graphene films on liquid Pt3Si/solid Pt. Nat. Commun. 10, 2809 (2019).

    Google Scholar 

  29. Huang, M. et al. Large-area single-crystal AB-bilayer and ABA-trilayer graphene grown on a Cu/Ni(111) foil. Nat. Nanotechnol. 15, 289–295 (2020).

    CAS  Google Scholar 

  30. Nguyen, V. L. et al. Layer-controlled single-crystalline graphene film with stacking order via Cu–Si alloy formation. Nat. Nanotechnol. 15, 861–867 (2020).

    CAS  Google Scholar 

  31. Brown, L. et al. Twinning and twisting of tri- and bilayer graphene. Nano Lett. 12, 1609–1615 (2012).

    CAS  Google Scholar 

  32. Chu, C. M. & Woon, W. Y. Growth of twisted bilayer graphene through two-stage chemical vapor deposition. Nanotechnology 31, 435603 (2020).

    CAS  Google Scholar 

  33. Lee, J.-H. et al. Wafer-scale growth of single-crystal monolayer graphene on reusable hydrogen-terminated germanium. Science 344, 286–289 (2014).

    CAS  Google Scholar 

  34. Xu, X. et al. Ultrafast epitaxial growth of metre-sized single-crystal graphene on industrial Cu foil. Sci. Bull. 62, 1074–1080 (2017).

    CAS  Google Scholar 

  35. Deng, B. et al. Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337–12345 (2017).

    CAS  Google Scholar 

  36. Zhang, X. et al. Epitaxial growth of 6 in. single-crystalline graphene on a Cu/Ni (111) film at 750 °C via chemical vapor deposition. Small 15, 1805395 (2019).

    Google Scholar 

  37. Liu, C., Wang, L., Qi, J. & Liu, K. Designed growth of large-size 2D single crystals. Adv. Mater. 32, 2000046 (2020).

    CAS  Google Scholar 

  38. Hamada, I. & Otani, M. Comparative van der Waals density-functional study of graphene on metal surfaces. Phys. Rev. B 82, 153412 (2010).

    Google Scholar 

  39. Liu, Z. et al. Interlayer binding energy of graphite: a mesoscopic determination from deformation. Phys. Rev. B 85, 205418 (2012).

    Google Scholar 

  40. Nguyen, V. L. et al. Seamless stitching of graphene domains on polished copper (111) foil. Adv. Mater. 27, 1376–1382 (2015).

    CAS  Google Scholar 

  41. Wu, M. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020).

    CAS  Google Scholar 

  42. Griep, M. H., Sandoz-Rosado, E., Tumlin, T. M. & Wetzel, E. Enhanced graphene mechanical properties through ultrasmooth copper growth substrates. Nano Lett. 16, 1657–1662 (2016).

    CAS  Google Scholar 

  43. Zhang, X. et al. High-quality graphene transfer via directional etching of metal substrates. Nanoscale 11, 16001–16006 (2019).

    CAS  Google Scholar 

  44. Yang, X. et al. Clean and efficient transfer of CVD-grown graphene by electrochemical etching of metal substrate. J. Electroanal. Chem. 688, 243–248 (2013).

    CAS  Google Scholar 

  45. Cui, C., Lim, A. T. O. & Huang, J. A cautionary note on graphene anti-corrosion coatings. Nat. Nanotechnol. 12, 834–835 (2017).

    CAS  Google Scholar 

  46. Wu, L. et al. Effects of normal load and etching time on current evolution of scratched GaAs surface during selective etching. Mater. Sci. Semicond. Process. 105, 104744 (2020).

    CAS  Google Scholar 

  47. Forti, S. et al. Mini-Dirac cones in the band structure of a copper intercalated epitaxial graphene superlattice. 2D Mater. 3, 035003 (2016).

    Google Scholar 

  48. Havener, R. W. et al. Van Hove singularities and excitonic effects in the optical conductivity of twisted bilayer graphene. Nano Lett. 14, 3353–3357 (2014).

    CAS  Google Scholar 

  49. Wu, J. B. et al. Resonant Raman spectroscopy of twisted multilayer graphene. Nat. Commun. 5, 5309 (2014).

    CAS  Google Scholar 

  50. Chen, G. et al. Tunable correlated Chern insulator and ferromagnetism in a moiré superlattice. Nature 579, 56–61 (2020).

    CAS  Google Scholar 

  51. Alden, J. S. et al. Strain solitons and topological defects in bilayer graphene. Proc. Natl Acad. Sci. USA 110, 11256–11260 (2013).

    CAS  Google Scholar 

  52. Hong, H. et al. Interfacial engineering of van der Waals coupled 2D layered materials. Adv. Mater. Interfaces 4, 1601054 (2017).

    Google Scholar 

  53. Shibuta, Y. & Elliott, J. A. Interaction between two graphene sheets with a turbostratic orientational relationship. Chem. Phys. Lett. 512, 146–150 (2011).

    CAS  Google Scholar 

  54. Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    Google Scholar 

Download references

Acknowledgements

This work was supported by Guangdong Major Project of Basic and Applied Basic Research with grant no. 2021B0301030002 (E.W. and K.L.); Beijing Natural Science Foundation under grant no. JQ19004 (K.L.); the National Natural Science Foundation of China under grant nos. 52025023 (K.L.), 51991342 (K.L.), 52021006 (K.L.), 11888101 (E.W.), 92163206 (M. Wu), 12027804 (Z.-J.W.), 52172035 (M. Wu), 52100115 (Z. Li), 52125307 (P.G.) and T2188101 (K.L.); the National Key R&D Program of China under grant nos. 2021YFB3200303 (K.L.), 2021YFA1400201 (H.H.), 2021YFA1400502 (M. Wu) and 2018YFA0703700 (J.H.); the Key R&D Program of Guangdong Province under grant nos. 2020B010189001 (K.L.), 2019B010931001 (K.L.) and 2018B030327001 (D.Y.); the Strategic Priority Research Program of Chinese Academy of Sciences with grant no. XDB33000000 (K.L.); the Pearl River Talent Recruitment Program of Guangdong Province with grant no. 2019ZT08C321 (K.L.). We acknowledge the Electron Microscopy Laboratory in Peking University for use of the electron microscope.

Author information

Authors and Affiliations

Authors

Contributions

K.L., Z.-J.W. and C.L. conceived the project. C.L., Z. Li and Q.W. performed the growth experiments. Z. Li and R.Q. conducted the equipotential surface etching experiments. Q.W., Z. Zhang, F.L. and X.W. performed the EBSD and XRD measurements. R.Q., P.G. and D.Y. performed the HRTEM and SAED experiments. C.L., Y.C., H.W., H.H. and P.-H.T. conducted the optical characterizations. Z. Zhou, N.S. and Z.F. performed the photocurrent measurements. H.F., M. Wang and Z. Liu conducted the ARPES characterizations. D.G., D.Z. and M. Wu contributed to the preparation of Cu(111) single crystals. Important contributions to the interpretation of the results and conception were made by K.L., C.L. and Z.-J.W. All the authors revised and commented on the paper.

Corresponding authors

Correspondence to Can Liu, Zhu-Jun Wang or Kaihui Liu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Cheol-Joo Kim and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–15.

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Li, Z., Qiao, R. et al. Designed growth of large bilayer graphene with arbitrary twist angles. Nat. Mater. 21, 1263–1268 (2022). https://doi.org/10.1038/s41563-022-01361-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01361-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing