Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

All-optical switching of magnetization in atomically thin CrI3

Abstract

Control of magnetism has attracted interest in achieving low-power and high-speed applications such as magnetic data storage and spintronic devices. Two-dimensional magnets allow for control of magnetic properties using the electric field, electrostatic doping and strain. In two-dimensional atomically thin magnets, a non-volatile all-optical method would offer the distinct advantage of switching magnetic states without application of an external field. Here, we demonstrate such all-optical magnetization switching in the atomically thin ferromagnetic semiconductor, CrI3, triggered by circularly polarized light pulses. The magnetization switching behaviour strongly depends on the exciting photon energy and polarization, in correspondence with excitonic transitions in CrI3, indicating that the switching process is related to spin angular momentum transfer from photoexcited carriers to local magnetic moments. Such an all-optical magnetization switching should allow for further exploration of magneto-optical interactions and open up applications in high-speed and low-power spintronic devices.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: All-optical magnetization switching in atomically thin magnetic crystal of CrI3 and sample characterization.
Fig. 2: Experimental demonstration of all-optical magnetization switching in 2D CrI3.
Fig. 3: Fluence-dependent magnetization switching phase diagram for circularly polarized exciting photons with different energies.
Fig. 4: Excitonic transitions in 3 L CrI3 and circularly polarized photon absorption difference at selected energies.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Huang, B. et al. Layer-dependent ferromagnetism in a van der Waals crystal down to the monolayer limit. Nature 546, 270–273 (2017).

    CAS  Article  Google Scholar 

  2. Gong, C. et al. Discovery of intrinsic ferromagnetism in two-dimensional van der Waals crystals. Nature 546, 265–269 (2017).

    CAS  Article  Google Scholar 

  3. Huang, B. et al. Electrical control of 2D magnetism in bilayer CrI3. Nat. Nanotechnol. 13, 544–548 (2018).

    CAS  Article  Google Scholar 

  4. Jiang, S., Li, L., Wang, Z., Mak, K. F. & Shan, J. Controlling magnetism in 2D CrI3 by electrostatic doping. Nat. Nanotechnol. 13, 549–553 (2018).

    CAS  Article  Google Scholar 

  5. Cenker, J. et al. Reversible strain-induced magnetic phase transition in a van der Waals magnet. Nat. Nanotechnol. 17, 256–261 (2022).

  6. Jiang, S., Xie, H., Shan, J. & Mak, K. F. Exchange magnetostriction in two-dimensional antiferromagnets. Nat. Mater. 19, 1295–1299 (2020).

    CAS  Article  Google Scholar 

  7. Li, T. et al. Pressure-controlled interlayer magnetism in atomically thin CrI3. Nat. Mater. 18, 1303–1308 (2019).

    CAS  Article  Google Scholar 

  8. Song, T. et al. Switching 2D magnetic states via pressure tuning of layer stacking. Nat. Mater. 18, 1298–1302 (2019).

    CAS  Article  Google Scholar 

  9. Tang, C., Zhang, L., Sanvito, S. & Du, A. Electric-controlled half-metallicity in magnetic van der Waals heterobilayer. J. Mater. Chem. C 8, 7034–7040 (2020).

    CAS  Article  Google Scholar 

  10. Bhoi, D. et al. Nearly room-temperature ferromagnetism in a pressure-induced correlated metallic state of the van der Waals insulator CrGeTe3. Phys. Rev. Lett. 127, 217203 (2021).

    CAS  Article  Google Scholar 

  11. Li, Q. et al. Patterning-induced ferromagnetism of Fe3GeTe2 van der Waals materials beyond room temperature. Nano Lett. 18, 5974–5980 (2018).

    CAS  Article  Google Scholar 

  12. Vedmedenko, E. Y. et al. The 2020 magnetism roadmap. J. Phys. D Appl. Phys. 53, 453001 (2020).

    CAS  Article  Google Scholar 

  13. Stanciu, C. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).

    CAS  Article  Google Scholar 

  14. Lambert, C.-H. et al. All-optical control of ferromagnetic thin films and nanostructures. Science 345, 1337–1340 (2014).

    CAS  Article  Google Scholar 

  15. Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).

    CAS  Article  Google Scholar 

  16. Chen, X.-J. Fundamental mechanism for all-optical helicity-dependent switching of magnetization. Sci. Rep. 7, 41294 (2017).

    CAS  Article  Google Scholar 

  17. El Hadri, M. S. et al. Two types of all-optical magnetization switching mechanisms using femtosecond laser pulses. Phys. Rev. B 94, 064412 (2016).

    Article  Google Scholar 

  18. van der Ziel, J. P., Pershan, P. S. & Malmstrom, L. D. Optically-induced magnetization resulting from the inverse Faraday effect. Phys. Rev. Lett. 15, 190–193 (1965).

    Article  Google Scholar 

  19. Zhang, H.-L., Wang, Y.-Z. & Chen, X.-J. A simple explanation for the inverse Faraday effect in metals. J. Magn. Magn. Mater. 321, L73–L74 (2009).

    CAS  Article  Google Scholar 

  20. Gorchon, J., Yang, Y. & Bokor, J. Model for multishot all-thermal all-optical switching in ferromagnets. Phys. Rev. B 94, 020409 (2016).

    Article  Google Scholar 

  21. Fernández-Rossier, J., Núñez, A. S., Abolfath, M. & MacDonald, A. Optical spin transfer in ferromagnetic semiconductors. Preprint at arXiv https://doi.org/10.48550/arXiv.cond-mat/0304492 (2003).

  22. Kudlis, A., Iorsh, I. & Shelykh, I. A. All-optical resonant magnetization switching in CrI3 monolayers. Phys. Rev. B 104, L020412 (2021).

    CAS  Article  Google Scholar 

  23. Oiwa, A., Mitsumori, Y., Moriya, R., Słupinski, T. & Munekata, H. Effect of optical spin injection on ferromagnetically coupled Mn spins in the III-V magnetic alloy semiconductor (Ga,Mn)As. Phys. Rev. Lett. 88, 137202 (2002).

    CAS  Article  Google Scholar 

  24. Seyler, K. L. et al. Ligand-field helical luminescence in a 2D ferromagnetic insulator. Nat. Phys. 14, 277–281 (2018).

    CAS  Article  Google Scholar 

  25. Wu, M., Li, Z., Cao, T. & Louie, S. G. Physical origin of giant excitonic and magneto-optical responses in two-dimensional ferromagnetic insulators. Nat. Commun. 10, 2371 (2019).

    Article  Google Scholar 

  26. Hubert, A. & Schäfer, R. Magnetic Domains: the Analysis of Magnetic Microstructures (Springer Science & Business Media, 2008).

  27. Khorsand, A. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).

    CAS  Article  Google Scholar 

  28. Malitson, I. H. Refraction and dispersion of synthetic sapphire. J. Opt. Soc. Am. 52, 1377–1379 (1962).

    CAS  Article  Google Scholar 

  29. McIntyre, J. & Aspnes, D. E. Differential reflection spectroscopy of very thin surface films. Surf. Sci. 24, 417–434 (1971).

    CAS  Article  Google Scholar 

  30. Shcherbakov, D. et al. Raman spectroscopy, photocatalytic degradation, and stabilization of atomically thin chromium tri-iodide. Nano Lett. 18, 4214–4219 (2018).

    CAS  Article  Google Scholar 

  31. Cornelissen, T. D., Córdoba, R. & Koopmans, B. Microscopic model for all optical switching in ferromagnets. Appl. Phys. Lett. 108, 142405 (2016).

    Article  Google Scholar 

  32. Molina-Sánchez, A., Catarina, G., Sangalli, D. & Fernandez-Rossier, J. Magneto-optical response of chromium trihalide monolayers: chemical trends. J. Mater. Chem. C 8, 8856–8863 (2020).

    Article  Google Scholar 

  33. McGuire, M. A., Dixit, H., Cooper, V. R. & Sales, B. C. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27, 612–620 (2015).

    CAS  Article  Google Scholar 

  34. Pizzocchero, F. et al. The hot pick-up technique for batch assembly of van der Waals heterostructures. Nat. Commun. 7, 11894 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the Gordon and Betty Moore Foundation (award no. 5722) and the Ernest S. Kuh Endowed Chair Professorship (P.Z., T.-F.C., Q.L., S.W., S.Y. and X.Z.). P.Z. thanks M. Wu and C. Hu for discussions. W.L.B.H. and J.E.G. acknowledge support from the Center for Emergent Materials, a National Science Foundation Materials Research Science and Engineering Center, under award number DMR-2011876. Q.W. and J.Y. acknowledge support from Intel Corporation under an award titled Valleytronics Center and US Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 within the Organic-Inorganic Nano-composites Program (KC3104).

Author information

Authors and Affiliations

Authors

Contributions

P.Z. and X.Z. initiated the project and designed the experiments. P.Z. prepared the samples with the assistance of T.-F.C.; P.Z. developed the all-optical magnetization switching set-up and performed all the optical measurements with the assistance of Q.L. and Q.W.; W.L.B.H. and J.E.G. grew the bulk CrI3 crystals. T.-F.C., S.W. and S.Y. provided valuable insight and suggestions. X.Z. supervised the research. P.Z. analysed the data and wrote the manuscript. All the authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Xiang Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–7.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, P., Chung, TF., Li, Q. et al. All-optical switching of magnetization in atomically thin CrI3. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01354-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-022-01354-7

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing