Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots


Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Principle of FSS and sample information.
Fig. 2: Quantum beats and FSS in ensemble CsPbI3 QD films.
Fig. 3: Temperature-dependent FSS in CsPbI3 QDs.
Fig. 4: Temperature-dependent lattice distortion in CsPbI3 QDs.
Fig. 5: Quasi-cubic model calculation and fine-structure gap.
Fig. 6: Calculated temperature- and size-dependent FSS.

Data availability

All data are available in the main text or the Supplementary Information and can be obtained upon request from K.W. ( They are also available at figshare, Source data are provided with this paper.

Code availability

Custom software developed for the theoretical modelling associated with this study is available for verification purposes upon request from P.C.S. (


  1. Michler, P. Quantum Dots for Quantum Information Technologies Vol. 237 (Springer, 2017).

  2. Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).

    CAS  Google Scholar 

  3. García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).

    Google Scholar 

  4. Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).

    Google Scholar 

  5. Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).

    CAS  Google Scholar 

  6. Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).

    CAS  Google Scholar 

  7. Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).

    CAS  Google Scholar 

  8. Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).

    CAS  Google Scholar 

  9. Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).

    CAS  Google Scholar 

  10. Lv, Y. et al. Quantum interference in a single perovskite nanocrystal. Nano Lett. 19, 4442–4447 (2019).

    CAS  Google Scholar 

  11. Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).

    CAS  Google Scholar 

  12. Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).

    CAS  Google Scholar 

  13. Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).

    CAS  Google Scholar 

  14. Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).

    Google Scholar 

  15. Nestoklon, M. O. et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B 97, 235304 (2018).

    CAS  Google Scholar 

  16. Sercel, P. C., Lyons, J. L., Bernstein, N. & Efros, A. L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 151, 234106 (2019).

    Google Scholar 

  17. Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).

    CAS  Google Scholar 

  18. Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).

    CAS  Google Scholar 

  19. Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).

    CAS  Google Scholar 

  20. Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).

    CAS  Google Scholar 

  21. Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).

    CAS  Google Scholar 

  22. Htoon, H., Furis, M., Crooker, S. A., Jeong, S. & Klimov, V. I. Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots. Phys. Rev. B 77, 035328 (2008).

    Google Scholar 

  23. Li, Y., Luo, X., Liu, Y., Lu, X. & Wu, K. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5, 1701–1708 (2020).

    CAS  Google Scholar 

  24. Li, Y., Luo, X., Ding, T., Lu, X. & Wu, K. Size- and halide-dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 59, 14292–14295 (2020).

    CAS  Google Scholar 

  25. Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018).

    CAS  Google Scholar 

  26. Yang, Z. et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett. 2, 1621–1627 (2017).

    CAS  Google Scholar 

  27. Shang, Q., Kaledin, A. L., Li, Q. & Lian, T. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. J. Chem. Phys. 151, 074705 (2019).

    Google Scholar 

  28. Strohmair, S. et al. Spin polarization dynamics of free charge carriers in CsPbI3 nanocrystals. Nano Lett. 20, 4724–4730 (2020).

    CAS  Google Scholar 

  29. Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).

    CAS  Google Scholar 

  30. Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).

    CAS  Google Scholar 

  31. Batignani, G. et al. Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat. Commun. 9, 1971 (2018).

    Google Scholar 

  32. Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).

    Google Scholar 

  33. Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).

    CAS  Google Scholar 

  34. Debnath, T. et al. Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals. Nat. Commun. 12, 2629 (2021).

    CAS  Google Scholar 

  35. Kaczkowski, J. & Płowaś-Korus, I. The vibrational and thermodynamic properties of CsPbI3 polymorphs: an improved description based on the SCAN meta-GGA functional. J. Phys. Chem. Lett. 12, 6613–6621 (2021).

    CAS  Google Scholar 

  36. Jong, U.-G. et al. A first-principles study on the chemical stability of inorganic perovskite solid solutions Cs1−xRbxPbI3 at finite temperature and pressure. J. Mater. Chem. A 6, 17994–18002 (2018).

    CAS  Google Scholar 

  37. Dyakonov, M. I. & Khaetskii, A. Spin Physics in Semiconductors Vol. 157 (Springer, 2008).

  38. Tartakovskii, A. I. et al. Dynamics of coherent and Incoherent spin polarizations in ensembles of quantum dots. Phys. Rev. Lett. 93, 057401 (2004).

    CAS  Google Scholar 

  39. Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).

    CAS  Google Scholar 

  40. Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).

    CAS  Google Scholar 

  41. Grigoryev, P. S., Belykh, V. V., Yakovlev, D. R., Lhuillier, E. & Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021).

    CAS  Google Scholar 

  42. Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017).

    Google Scholar 

  43. Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015).

    CAS  Google Scholar 

  44. Wang, Y. et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).

    CAS  Google Scholar 

  45. Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).

    CAS  Google Scholar 

  46. Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).

    CAS  Google Scholar 

  47. Zhao, Q. et al. Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5, 238–247 (2020).

  48. Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).

    CAS  Google Scholar 

  49. Sercel, P. C. et al. Exciton fine structure in perovskite nanocrystals. Nano Lett. 16, 4068–4077 (2019).

    Google Scholar 

  50. Schmitz, A. et al. Optical probing of crystal lattice configurations in single CsPbBr3 nanoplatelets. Nano Lett. 21, 9085–9092 (2021).

    CAS  Google Scholar 

  51. Shyamal, S. et al. Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 11, 3608–3614 (2020).

    CAS  Google Scholar 

  52. Peng, L. et al. Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 141, 16160–16168 (2019).

    CAS  Google Scholar 

  53. Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).

    CAS  Google Scholar 

  54. Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).

    CAS  Google Scholar 

  55. Chen, S. et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Sci. Bull. 65, 1643–1649 (2020).

    CAS  Google Scholar 

  56. McCusker, L., Von Dreele, R., Cox, D., Louër, D. & Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999).

    CAS  Google Scholar 

  57. Thompson, P., Cox, D. & Hastings, J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987).

    CAS  Google Scholar 

  58. Finger, L., Cox, D. & Jephcoat, A. A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Crystallogr. 27, 892–900 (1994).

    CAS  Google Scholar 

  59. Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).

    CAS  Google Scholar 

Download references


We thank Y. Zhao, W. Liu and Q. Jiang for TEM measurements, C. Wang for X-ray diffraction measurements and P. Guo for discussions on X-ray diffraction refinement. K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), the Ministry of Science and Technology of China (2018YFA0208703), the National Natural Science Foundation of China (22173098) and Dalian Institute of Chemical Physics (DICP I201914). All the theoretical calculations of exciton fine structure and simulations of QD transient absorption were supported by the Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science within the US Department of Energy.

Author information

Authors and Affiliations



K.W. and Y.H. conceived the idea and initiated the study. K.W. supervised and designed the project. Y.H. synthesized the samples and measured their spectroscopy. W.L. made the X-ray diffraction Rietveld refinement. X.L., Y.L., F.S. and F.Z. helped with experiments or data analysis. P.C.S. developed the theoretical model for exciton fine structure and transient absorption. K.W., Y.H. and P.C.S. wrote the manuscript with contributions from all authors.

Corresponding authors

Correspondence to Peter C. Sercel or Kaifeng Wu.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Wolfgang Langbein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Texts 1–7, Figs. 1–42, Tables 1–10 and references.

Reporting Summary

Source data

Source Data Fig. 1

Figure 1 source data in spreadsheet.

Source Data Fig. 2

Figure 2 source data in spreadsheet.

Source Data Fig. 3

Figure 3 source data in spreadsheet.

Source Data Fig. 4

Figure 4 source data in spreadsheet.

Source Data Fig. 5

Figure 5 source data in spreadsheet.

Source Data Fig. 6

Figure 6 source data in spreadsheet.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, Y., Liang, W., Lin, X. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing