Abstract
Anisotropic exchange splitting in semiconductor quantum dots results in bright-exciton fine-structure splitting important for quantum information processing. Direct measurement of fine-structure splitting usually requires single/few quantum dots at liquid-helium temperature because of its sensitivity to quantum dot size and shape, whereas measuring and controlling fine-structure splitting at an ensemble level seem to be impossible unless all the dots are made to be nearly identical. Here we report strong bright-exciton fine-structure splitting up to 1.6 meV in solution-processed CsPbI3 perovskite quantum dots, manifested as quantum beats in ensemble-level transient absorption at liquid-nitrogen to room temperature. The splitting is robust to quantum dot size and shape heterogeneity, and increases with decreasing temperature, pointing towards a mechanism associated with orthorhombic distortion of the perovskite lattice. Effective-mass-approximation calculations reveal an intrinsic ‘fine-structure gap’ that agrees well with the observed fine-structure splitting. This gap stems from an avoided crossing of bright excitons confined in orthorhombically distorted quantum dots that are bounded by the pseudocubic {100} family of planes.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
In situ imaging of the atomic phase transition dynamics in metal halide perovskites
Nature Communications Open Access 06 November 2023
-
In Situ Iodide Passivation Toward Efficient CsPbI3 Perovskite Quantum Dot Solar Cells
Nano-Micro Letters Open Access 29 June 2023
-
Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots
Nature Communications Open Access 22 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






Data availability
All data are available in the main text or the Supplementary Information and can be obtained upon request from K.W. (kwu@dicp.ac.cn). They are also available at figshare, https://figshare.com/articles/figure/20220725-Figures_in_paper_pptx/20365515. Source data are provided with this paper.
Code availability
Custom software developed for the theoretical modelling associated with this study is available for verification purposes upon request from P.C.S. (pcsercel@gmail.com).
References
Michler, P. Quantum Dots for Quantum Information Technologies Vol. 237 (Springer, 2017).
Kagan, C. R., Bassett, L. C., Murray, C. B. & Thompson, S. M. Colloidal quantum dots as platforms for quantum information science. Chem. Rev. 121, 3186–3233 (2021).
García de Arquer, F. P. et al. Semiconductor quantum dots: technological progress and future challenges. Science 373, eaaz8541 (2021).
Kagan, C. R., Lifshitz, E., Sargent, E. H. & Talapin, D. V. Building devices from colloidal quantum dots. Science 353, aac5523 (2016).
Nirmal, M. et al. Fluorescence intermittency in single cadmium selenide nanocrystals. Nature 383, 802–804 (1996).
Galland, C. et al. Two types of luminescence blinking revealed by spectroelectrochemistry of single quantum dots. Nature 479, 203–207 (2011).
Aharonovich, I., Englund, D. & Toth, M. Solid-state single-photon emitters. Nat. Photon. 10, 631–641 (2016).
Senellart, P., Solomon, G. & White, A. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12, 1026–1039 (2017).
Utzat, H. et al. Coherent single-photon emission from colloidal lead halide perovskite quantum dots. Science 363, 1068–1072 (2019).
Lv, Y. et al. Quantum interference in a single perovskite nanocrystal. Nano Lett. 19, 4442–4447 (2019).
Tamarat, P. et al. The dark exciton ground state promotes photon-pair emission in individual perovskite nanocrystals. Nat. Commun. 11, 6001 (2020).
Tamarat, P. et al. The ground exciton state of formamidinium lead bromide perovskite nanocrystals is a singlet dark state. Nat. Mater. 18, 717–724 (2019).
Becker, M. A. et al. Bright triplet excitons in caesium lead halide perovskites. Nature 553, 189–193 (2018).
Yin, C. et al. Bright-exciton fine-structure splittings in single perovskite nanocrystals. Phys. Rev. Lett. 119, 026401 (2017).
Nestoklon, M. O. et al. Optical orientation and alignment of excitons in ensembles of inorganic perovskite nanocrystals. Phys. Rev. B 97, 235304 (2018).
Sercel, P. C., Lyons, J. L., Bernstein, N. & Efros, A. L. Quasicubic model for metal halide perovskite nanocrystals. J. Chem. Phys. 151, 234106 (2019).
Xu, X. et al. Coherent optical spectroscopy of a strongly driven quantum dot. Science 317, 929–932 (2007).
Bonadeo, N. H. et al. Coherent optical control of the quantum state of a single quantum dot. Science 282, 1473–1476 (1998).
Benson, O., Santori, C., Pelton, M. & Yamamoto, Y. Regulated and entangled photons from a single quantum dot. Phys. Rev. Lett. 84, 2513–2516 (2000).
Akopian, N. et al. Entangled photon pairs from semiconductor quantum dots. Phys. Rev. Lett. 96, 130501 (2006).
Gammon, D., Snow, E. S., Shanabrook, B. V., Katzer, D. S. & Park, D. Fine structure splitting in the optical spectra of single GaAs quantum dots. Phys. Rev. Lett. 76, 3005–3008 (1996).
Htoon, H., Furis, M., Crooker, S. A., Jeong, S. & Klimov, V. I. Linearly polarized ‘fine structure’ of the bright exciton state in individual CdSe nanocrystal quantum dots. Phys. Rev. B 77, 035328 (2008).
Li, Y., Luo, X., Liu, Y., Lu, X. & Wu, K. Size- and composition-dependent exciton spin relaxation in lead halide perovskite quantum dots. ACS Energy Lett. 5, 1701–1708 (2020).
Li, Y., Luo, X., Ding, T., Lu, X. & Wu, K. Size- and halide-dependent Auger recombination in lead halide perovskite nanocrystals. Angew. Chem. Int. Ed. 59, 14292–14295 (2020).
Dong, Y. et al. Precise control of quantum confinement in cesium lead halide perovskite quantum dots via thermodynamic equilibrium. Nano Lett. 18, 3716–3722 (2018).
Yang, Z. et al. Impact of the halide cage on the electronic properties of fully inorganic cesium lead halide perovskites. ACS Energy Lett. 2, 1621–1627 (2017).
Shang, Q., Kaledin, A. L., Li, Q. & Lian, T. Size dependent charge separation and recombination in CsPbI3 perovskite quantum dots. J. Chem. Phys. 151, 074705 (2019).
Strohmair, S. et al. Spin polarization dynamics of free charge carriers in CsPbI3 nanocrystals. Nano Lett. 20, 4724–4730 (2020).
Giovanni, D. et al. Highly spin-polarized carrier dynamics and ultralarge photoinduced magnetization in CH3NH3PbI3 perovskite thin films. Nano Lett. 15, 1553–1558 (2015).
Kim, Y.-H. et al. Chiral-induced spin selectivity enables a room-temperature spin light-emitting diode. Science 371, 1129–1133 (2021).
Batignani, G. et al. Probing femtosecond lattice displacement upon photo-carrier generation in lead halide perovskite. Nat. Commun. 9, 1971 (2018).
Park, M. et al. Excited-state vibrational dynamics toward the polaron in methylammonium lead iodide perovskite. Nat. Commun. 9, 2525 (2018).
Thouin, F. et al. Phonon coherences reveal the polaronic character of excitons in two-dimensional lead halide perovskites. Nat. Mater. 18, 349–356 (2019).
Debnath, T. et al. Coherent vibrational dynamics reveals lattice anharmonicity in organic–inorganic halide perovskite nanocrystals. Nat. Commun. 12, 2629 (2021).
Kaczkowski, J. & Płowaś-Korus, I. The vibrational and thermodynamic properties of CsPbI3 polymorphs: an improved description based on the SCAN meta-GGA functional. J. Phys. Chem. Lett. 12, 6613–6621 (2021).
Jong, U.-G. et al. A first-principles study on the chemical stability of inorganic perovskite solid solutions Cs1−xRbxPbI3 at finite temperature and pressure. J. Mater. Chem. A 6, 17994–18002 (2018).
Dyakonov, M. I. & Khaetskii, A. Spin Physics in Semiconductors Vol. 157 (Springer, 2008).
Tartakovskii, A. I. et al. Dynamics of coherent and Incoherent spin polarizations in ensembles of quantum dots. Phys. Rev. Lett. 93, 057401 (2004).
Odenthal, P. et al. Spin-polarized exciton quantum beating in hybrid organic–inorganic perovskites. Nat. Phys. 13, 894–899 (2017).
Crane, M. J. et al. Coherent spin precession and lifetime-limited spin dephasing in CsPbBr3 perovskite nanocrystals. Nano Lett. 20, 8626–8633 (2020).
Grigoryev, P. S., Belykh, V. V., Yakovlev, D. R., Lhuillier, E. & Bayer, M. Coherent spin dynamics of electrons and holes in CsPbBr3 colloidal nanocrystals. Nano Lett. 21, 8481–8487 (2021).
Brédas, J.-L., Sargent, E. H. & Scholes, G. D. Photovoltaic concepts inspired by coherence effects in photosynthetic systems. Nat. Mater. 16, 35–44 (2017).
Cassette, E., Pensack, R. D., Mahler, B. & Scholes, G. D. Room-temperature exciton coherence and dephasing in two-dimensional nanostructures. Nat. Commun. 6, 6086 (2015).
Wang, Y. et al. Thermodynamically stabilized β-CsPbI3–based perovskite solar cells with efficiencies >18%. Science 365, 591–595 (2019).
Steele, J. A. et al. Thermal unequilibrium of strained black CsPbI3 thin films. Science 365, 679–684 (2019).
Swarnkar, A. et al. Quantum dot–induced phase stabilization of α-CsPbI3 perovskite for high-efficiency photovoltaics. Science 354, 92–95 (2016).
Zhao, Q. et al. Size-dependent lattice structure and confinement properties in CsPbI3 perovskite nanocrystals: negative surface energy for stabilization. ACS Energy Lett. 5, 238–247 (2020).
Bertolotti, F. et al. Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano 11, 3819–3831 (2017).
Sercel, P. C. et al. Exciton fine structure in perovskite nanocrystals. Nano Lett. 16, 4068–4077 (2019).
Schmitz, A. et al. Optical probing of crystal lattice configurations in single CsPbBr3 nanoplatelets. Nano Lett. 21, 9085–9092 (2021).
Shyamal, S. et al. Facets and defects in perovskite nanocrystals for photocatalytic CO2 reduction. J. Phys. Chem. Lett. 11, 3608–3614 (2020).
Peng, L. et al. Arm growth and facet modulation in perovskite nanocrystals. J. Am. Chem. Soc. 141, 16160–16168 (2019).
Li, X. et al. An all-optical quantum gate in a semiconductor quantum dot. Science 301, 809–811 (2003).
Ye, Z., Sun, D. & Heinz, T. F. Optical manipulation of valley pseudospin. Nat. Phys. 13, 26–29 (2017).
Chen, S. et al. Transmission electron microscopy of organic-inorganic hybrid perovskites: myths and truths. Sci. Bull. 65, 1643–1649 (2020).
McCusker, L., Von Dreele, R., Cox, D., Louër, D. & Scardi, P. Rietveld refinement guidelines. J. Appl. Crystallogr. 32, 36–50 (1999).
Thompson, P., Cox, D. & Hastings, J. Rietveld refinement of Debye–Scherrer synchrotron X-ray data from Al2O3. J. Appl. Crystallogr. 20, 79–83 (1987).
Finger, L., Cox, D. & Jephcoat, A. A correction for powder diffraction peak asymmetry due to axial divergence. J. Appl. Crystallogr. 27, 892–900 (1994).
Toby, B. H. & Von Dreele, R. B. GSAS-II: the genesis of a modern open-source all purpose crystallography software package. J. Appl. Crystallogr. 46, 544–549 (2013).
Acknowledgements
We thank Y. Zhao, W. Liu and Q. Jiang for TEM measurements, C. Wang for X-ray diffraction measurements and P. Guo for discussions on X-ray diffraction refinement. K.W. acknowledges financial support from the Chinese Academy of Sciences (YSBR-007), the Ministry of Science and Technology of China (2018YFA0208703), the National Natural Science Foundation of China (22173098) and Dalian Institute of Chemical Physics (DICP I201914). All the theoretical calculations of exciton fine structure and simulations of QD transient absorption were supported by the Center for Hybrid Organic-Inorganic Semiconductors for Energy (CHOISE), an Energy Frontier Research Center funded by the Office of Basic Energy Sciences, Office of Science within the US Department of Energy.
Author information
Authors and Affiliations
Contributions
K.W. and Y.H. conceived the idea and initiated the study. K.W. supervised and designed the project. Y.H. synthesized the samples and measured their spectroscopy. W.L. made the X-ray diffraction Rietveld refinement. X.L., Y.L., F.S. and F.Z. helped with experiments or data analysis. P.C.S. developed the theoretical model for exciton fine structure and transient absorption. K.W., Y.H. and P.C.S. wrote the manuscript with contributions from all authors.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks Wolfgang Langbein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Texts 1–7, Figs. 1–42, Tables 1–10 and references.
Source data
Source Data Fig. 1
Figure 1 source data in spreadsheet.
Source Data Fig. 2
Figure 2 source data in spreadsheet.
Source Data Fig. 3
Figure 3 source data in spreadsheet.
Source Data Fig. 4
Figure 4 source data in spreadsheet.
Source Data Fig. 5
Figure 5 source data in spreadsheet.
Source Data Fig. 6
Figure 6 source data in spreadsheet.
Rights and permissions
Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.
About this article
Cite this article
Han, Y., Liang, W., Lin, X. et al. Lattice distortion inducing exciton splitting and coherent quantum beating in CsPbI3 perovskite quantum dots. Nat. Mater. 21, 1282–1289 (2022). https://doi.org/10.1038/s41563-022-01349-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-022-01349-4
This article is cited by
-
In situ imaging of the atomic phase transition dynamics in metal halide perovskites
Nature Communications (2023)
-
Room-temperature coherent optical manipulation of hole spins in solution-grown perovskite quantum dots
Nature Nanotechnology (2023)
-
Ultrafast optical investigation of carrier and spin dynamics in low-dimensional perovskites
Science China Technological Sciences (2023)
-
In Situ Iodide Passivation Toward Efficient CsPbI3 Perovskite Quantum Dot Solar Cells
Nano-Micro Letters (2023)
-
Excitonic Bloch–Siegert shift in CsPbI3 perovskite quantum dots
Nature Communications (2022)