Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Engineering the spin-exchange interaction in organic semiconductors

Organic semiconductors based on molecular or polymeric π-conjugated systems are now used at scale in organic light-emitting diode (OLED) displays and show real promise in thin-film photovoltaics and transistor structures. Here, we address recent progress in understanding and performance for OLEDs and for organic photovoltaics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Molecular structures of selected organic semiconductors.
Fig. 2: Excitonic-energy-level diagram of organic semiconductors.

References

  1. Fratini, S. et al. Nat. Mater. 19, 491–502 (2020).

    Article  CAS  Google Scholar 

  2. Wang, S.-J. et al. Nature 606, 700–705 (2022).

    Article  CAS  Google Scholar 

  3. Tang, C. W. & Van Slyke, S. A. Appl. Phys. Lett. 51, 913–915 (1987).

    Article  CAS  Google Scholar 

  4. Burroughes, J. H. et al. Nature 347, 539–541 (1990).

    Article  CAS  Google Scholar 

  5. Adachi, C. et al. J. Appl. Phys. 90, 5048–5051 (2001).

    Article  CAS  Google Scholar 

  6. Uoyama, H. et al. Nature 492, 234–238 (2012).

    Article  CAS  Google Scholar 

  7. Chen, X.-K., Kim, D. & Brédas, J.-L. Acc. Chem. Res. 51, 2215–2224 (2018).

    Article  CAS  Google Scholar 

  8. Etherington, M. K. et al. Nat. Commun. 7, 13680 (2016).

    Article  CAS  Google Scholar 

  9. Chan, C. Y. et al. Nat. Photon. 15, 203–207 (2021).

    Article  CAS  Google Scholar 

  10. Yuan, J. et al. Joule 3, 1140–1151 (2019).

    Article  CAS  Google Scholar 

  11. Zhan, L. et al. Joule 6, 662–675 (2022).

    Article  CAS  Google Scholar 

  12. Cui, Y. et al. Nat. Commun. 10, 2515 (2019).

    Article  Google Scholar 

  13. Zhu, L. et al. Nat. Mater. 21, 656–663 (2022).

    Article  CAS  Google Scholar 

  14. Liu, J. et al. Nat. Energy 1, 16089 (2016).

    Article  CAS  Google Scholar 

  15. Karki, A. et al. Adv. Mater. 31, 1903868 (2019).

    Article  CAS  Google Scholar 

  16. Azzouzi, M. et al. Energy Environ. Sci. 15, 1256–1270 (2022).

    Article  CAS  Google Scholar 

  17. Ullbrich, S. et al. Nat. Mater. 18, 459–464 (2019).

    Article  CAS  Google Scholar 

  18. Gillett, A. J. et al. Nature 597, 666–671 (2021).

    Article  CAS  Google Scholar 

  19. Snaith, H. J. Nat. Mater. 17, 372–376 (2018).

    Article  CAS  Google Scholar 

  20. Kondakov, D. Y. et al. J. Appl. Phys. 106, 124510 (2009).

    Article  Google Scholar 

  21. Di, D. et al. Adv. Mater. 29, 1605987 (2017).

    Article  Google Scholar 

  22. Rao, A. & Friend, R. Nat. Rev. Mater. 2, 17063 (2012).

    Article  Google Scholar 

  23. Tabachnyk, M. et al. Nat. Mater. 13, 1033–1038 (2014).

    Article  CAS  Google Scholar 

  24. Einzinger, M. et al. Nature 571, 90–94 (2019).

    Article  CAS  Google Scholar 

  25. Ai, X. et al. Nature 563, 536–540 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge funding from the European Research Council under the European Union’s Horizon 2020 research and innovation programme (grant agreement no. 101020167 (A.J.G. and R.H.F); and no. 758826 (A.R.)).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Richard Henry Friend.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rao, A., Gillett, A.J. & Friend, R.H. Engineering the spin-exchange interaction in organic semiconductors. Nat. Mater. 21, 976–978 (2022). https://doi.org/10.1038/s41563-022-01347-6

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01347-6

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing