Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity



Solid-state batteries are seen as key to the development of safer and higher-energy-density batteries, by limiting flammability and enabling the use of the lithium metal anode, respectively. Composite polymer–ceramic electrolytes are a possible solution for their realization, by benefiting from the combined mechanical properties of the polymer electrolyte and the thermal stability and high conductivity of the ceramic electrolyte. In this study we used different liquid electrolyte chemistries as models for the polymer electrolytes, and evaluated the effect of adding a variety of porous and dense ceramic electrolytes on the conductivity. All the results could be modelled with the effective medium theory, allowing prediction of the conductivity of electrolyte combinations. We unambiguously determined that highly conductive porous particles act as insulators in such systems, whereas dense particles act as conductors, thereby advancing our understanding of composite electrolyte conductivity.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Possible factors that can affect the effective conductivity of composite electrolytes.
Fig. 2: Conductivity of composites with porous particles.
Fig. 3: Effective conductivity of porous particles.
Fig. 4: Modelling the conductivity of aggregated CE particles as non-conducting.
Fig. 5: Conductivity of composites containing dense particles.

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.


  1. Armand, M. & Tarascon, J. M. Issues and challenges facing rechargeable lithium batteries. Nature 414, 359–367 (2001).

    Article  Google Scholar 

  2. Chu, S., Cui, Y. & Liu, N. The path towards sustainable energy. Nat. Mater. 16, 16–22 (2016).

    Article  CAS  Google Scholar 

  3. Varzi, A., Raccichini, R. & Scrosati, B. Challenges and prospects of the role of solid electrolytes in the revitalization of lithium metal batteries. J. Mater. Chem. A 4, 17251–17259 (2016).

    CAS  Article  Google Scholar 

  4. Tan, D. H. S., Banerjee, A., Chen, Z. & Meng, Y. S. From nanoscale interface characterization to sustainable energy storage using all-solid-state batteries. Nat. Nanotechnol. (2020).

  5. Chen, R., Li, Q., Yu, X., Chen, L. & Li, H. Approaching practically accessible solid-state batteries: stability issues related to solid electrolytes and interfaces. Chem. Rev. (2019).

  6. Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

    CAS  Article  Google Scholar 

  7. Zhou, D., Shanmukaraj, D., Tkacheva, A., Armand, M. & Wang, G. Polymer electrolytes for lithium-based batteries: advances and prospects. Chem 5, 2326–2352 (2019).

    CAS  Article  Google Scholar 

  8. Sun, C., Liu, J., Gong, Y., Wilkinson, D. P. & Zhang, J. Recent advances in all-solid-state rechargeable lithium batteries. Nano Energy 33, 363–386 (2017).

    CAS  Article  Google Scholar 

  9. Meesala, Y., Jena, A., Chang, H. & Liu, R. S. Recent advancements in Li-ion conductors for all-solid-state Li-ion batteries. ACS Energy Lett. 2, 2734–2751 (2017).

    CAS  Article  Google Scholar 

  10. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    CAS  Article  Google Scholar 

  11. Balaish, M. et al. Processing thin but robust electrolytes for solid-state batteries. Nat. Energy (2021).

  12. Lewis, J. A. et al. Linking void and interphase evolution to electrochemistry in solid-state batteries using operando X-ray tomography. Nat. Mater. (2021).

  13. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    CAS  Article  Google Scholar 

  14. Zhang, J. et al. High-voltage and free-standing poly(propylene carbonate)/Li6.75La3Zr1.75Ta0.25O12 composite solid electrolyte for wide temperature range and flexible solid lithium ion battery. J. Mater. Chem. A 5, 4940–4948 (2017).

    CAS  Article  Google Scholar 

  15. Chen, F. et al. Solid polymer electrolytes incorporating cubic Li7La3Zr2O12 for all-solid-state lithium rechargeable batteries. Electrochim. Acta 258, 1106–1114 (2017).

    CAS  Article  Google Scholar 

  16. Zhang, X. et al. Synergistic coupling between Li6.75La3Zr1.75Ta0.25O12 and poly(vinylidene fluoride) induces high ionic conductivity, mechanical strength, and thermal stability of solid composite electrolytes. J. Am. Chem. Soc. 139, 13779–13785 (2017).

    CAS  Article  Google Scholar 

  17. Chen, L. et al. PEO/garnet composite electrolytes for solid-state lithium batteries: from “ceramic-in-polymer” to “polymer-in-ceramic. Nano Energy 46, 176–184 (2018).

    CAS  Article  Google Scholar 

  18. Li, R. et al. Unitized configuration design of thermally stable composite polymer electrolyte for lithium batteries capable of working over a wide range of temperatures. Adv. Eng. Mater. (2019).

  19. Villa, A., Verduzco, J. C., Libera, J. A. & Marinero, E. E. Ionic conductivity optimization of composite polymer electrolytes through filler particle chemical modification. Ionics 27, 2483–2493 (2021).

    CAS  Article  Google Scholar 

  20. Zha, W., Chen, F., Yang, D., Shen, Q. & Zhang, L. High-performance Li6.4La3Zr1.4Ta0.6O12/poly(ethylene oxide)/succinonitrile composite electrolyte for solid-state lithium batteries. J. Power Sources 397, 87–94 (2018).

    CAS  Article  Google Scholar 

  21. Zhang, J. et al. Flexible and ion-conducting membrane electrolytes for solid-state lithium batteries: dispersion of garnet nanoparticles in insulating polyethylene oxide. Nano Energy 28, 447–454 (2016).

    CAS  Article  Google Scholar 

  22. Zhao, C. Z. et al. An anion-immobilized composite electrolyte for dendrite-free lithium metal anodes. Proc. Natl Acad. Sci. U.S.A. 114, 11069–11074 (2017).

    CAS  Article  Google Scholar 

  23. Cheng, S. H. S. et al. Electrochemical performance of all-solid-state lithium batteries using inorganic lithium garnets particulate reinforced PEO/LiClO4 electrolyte. Electrochim. Acta 253, 430–438 (2017).

    CAS  Article  Google Scholar 

  24. Tao, X. et al. Solid-state lithium–sulfur batteries operated at 37 °C with composites of nanostructured Li7La3Zr2O12/carbon foam and polymer. Nano Lett. 17, 2967–2972 (2017).

    CAS  Article  Google Scholar 

  25. Liang, Y. F. et al. A superior composite gel polymer electrolyte of Li7La3Zr2O12-poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for rechargeable solid-state lithium ion batteries. Mater. Res. Bull. 102, 412–417 (2018).

    CAS  Article  Google Scholar 

  26. Li, Z. et al. Ionic conduction in composite polymer electrolytes: case of PEO:Ga-LLZO composites. ACS Appl. Mater. Interfaces 11, 784–791 (2019).

    CAS  Article  Google Scholar 

  27. Samsinger, R. F. et al. Influence of the processing on the ionic conductivity of solid-state hybrid electrolytes based on glass-ceramic particles dispersed in PEO with LiTFSI. J. Electrochem. Soc. 167, 120538 (2020).

    CAS  Article  Google Scholar 

  28. Mei, X. et al. A quantitative correlation between macromolecular crystallinity and ionic conductivity in polymer-ceramic composite solid electrolytes. Mater. Today Commun. 24, 101004 (2020).

    CAS  Article  Google Scholar 

  29. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    CAS  Article  Google Scholar 

  30. Kato, M., Hiraoka, K. & Seki, S. Investigation of the ionic conduction mechanism of polyether/Li7La3Zr2O12 composite solid electrolytes by electrochemical impedance spectroscopy. J. Electrochem. Soc. 167, 070559 (2020).

    Article  Google Scholar 

  31. Langer, F., Bardenhagen, I., Glenneberg, J. & Kun, R. Microstructure and temperature dependent lithium ion transport of ceramic–polymer composite electrolyte for solid-state lithium ion batteries based on garnet-type Li7La3Zr2O12. Solid State Ion. 291, 8–13 (2016).

    CAS  Article  Google Scholar 

  32. Wang, Y. J., Pan, Y. & Kim, D. Conductivity studies on ceramic Li1.3Al0.3Ti1.7(PO4)3-filled PEO-based solid composite polymer electrolytes. J. Power Sources 159, 690–701 (2006).

    CAS  Article  Google Scholar 

  33. Zhao, Y. et al. A promising PEO/LAGP hybrid electrolyte prepared by a simple method for all-solid-state lithium batteries. Solid State Ion. 295, 65–71 (2016).

    CAS  Article  Google Scholar 

  34. Xia, Y. et al. A newly designed composite gel polymer electrolyte based on poly(vinylidene fluoride-hexafluoropropylene) (PVDF-HFP) for enhanced solid-state lithium-sulfur batteries. Chem. Eur. J. 23, 15203–15209 (2017).

    CAS  Article  Google Scholar 

  35. Wang, W., Yi, E., Fici, A. J., Laine, R. M. & Kieffer, J. Lithium ion conducting poly(ethylene oxide)-based solid electrolytes containing active or passive ceramic nanoparticles. J. Phys. Chem. C. 121, 2563–2573 (2017).

    CAS  Article  Google Scholar 

  36. Jung, Y.-C., Lee, S.-M., Choi, J.-H., Jang, S. S. & Kim, D.-W. All solid-state lithium batteries assembled with hybrid solid electrolytes. J. Electrochem. Soc. 162, A704–A710 (2015).

    CAS  Article  Google Scholar 

  37. Park, M. S., Jung, Y. C. & Kim, D. W. Hybrid solid electrolytes composed of poly(1,4-butylene adipate) and lithium aluminum germanium phosphate for all-solid-state Li/LiNi0.6Co0.2Mn0.2O2 cells. Solid State Ion. 315, 65–70 (2018).

    CAS  Article  Google Scholar 

  38. MacFarlane, D. R., Newman, P. J., Nairn, K. M. & Forsyth, M. Lithium-ion conducting ceramic/polyether composites. Electrochim. Acta 43, 1333–1337 (1998).

    CAS  Article  Google Scholar 

  39. Yi, J., Liu, Y., Qiao, Y., He, P. & Zhou, H. Boosting the cycle life of Li–O2 batteries at elevated temperature by employing a hybrid polymer–ceramic solid electrolyte. ACS Energy Lett. 2, 1378–1384 (2017).

    CAS  Article  Google Scholar 

  40. Maxwell, J. C. A Treatise on Electricity and Magnetism Vol. 1 (Clarendon Press, 1873).

  41. Barrande, M., Bouchet, R. & Denoyel, R. Tortuosity of porous particles. Anal. Chem. 79, 9115–9121 (2007).

    CAS  Article  Google Scholar 

  42. Weissberg, H. L. Effective diffusion coefficient in porous media. J. Appl. Phys. 34, 2636–2639 (1963).

    CAS  Article  Google Scholar 

  43. Bouchet, R., Devaux, D., Wernert, V. & Denoyel, R. Separation of bulk, surface, and topological contributions to the conductivity of suspensions of porous particles. J. Phys. Chem. C. 116, 5090–5096 (2012).

    CAS  Article  Google Scholar 

  44. Kubanska, A. et al. Elaboration of controlled size Li1.5Al0.5Ge1.5(PO4)3 crystallites from glass-ceramics. Solid State Ion. 266, 44–50 (2014).

    CAS  Article  Google Scholar 

  45. Hou, M., Liang, F., Chen, K., Dai, Y. & Xue, D. Challenges and perspectives of NASICON-type solid electrolytes for all-solid-state lithium batteries. Nanotechnology 31, 132003 (2020).

    CAS  Article  Google Scholar 

  46. Devaux, D., Bouchet, R., Glé, D. & Denoyel, R. Mechanism of ion transport in PEO/LiTFSI complexes: effect of temperature, molecular weight and end groups. Solid State Ion. 227, 119–127 (2012).

    CAS  Article  Google Scholar 

  47. Pfaffenhuber, C., Göbel, M., Popovic, J. & Maier, J. Soggy-sand electrolytes: status and perspectives. Phys. Chem. Chem. Phys. 15, 18318–18335 (2013).

    CAS  Article  Google Scholar 

  48. Aveyard, R. et al. Solid/Liquid Dispersions (ed. Tadros, T. F.) (Academic Press, 1987).

  49. Weiss, M. et al. From liquid‑ to solid‑state batteries: ion transfer kinetics of heteroionic interfaces. Electrochem. Energy Rev. (2020).

Download references


We thank B. Simon from the company SAFT for the mercury porosimetry measurements. The Agence de la Transition Ecologique (ADEME) is acknowledged for funding through the project IDOLES (grant no. 1982C0016).

Author information

Authors and Affiliations



R.B. designed the study. J.A.I. collected the experimental data. Data analysis and interpretation were performed by J.A.I. with the help of R.B. and D.D. The manuscript was written by J.A.I., R.B. and D.D. All authors have approved the final version of the manuscript.

Corresponding author

Correspondence to Renaud Bouchet.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–8, Tables 1 and 2, description of the microstructures of CE powders and experimental procedure for measuring the conductivity of LATP.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Isaac, J.A., Devaux, D. & Bouchet, R. Dense inorganic electrolyte particles as a lever to promote composite electrolyte conductivity. Nat. Mater. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing