Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Charge density waves in infinite-layer NdNiO2 nickelates


In materials science, much effort has been devoted to the reproduction of superconductivity in chemical compositions, analogous to cuprate superconductors since their discovery over 30 years ago. This approach was recently successful in realising superconductivity in infinite-layer nickelates1,2,3,4,5,6. Although differing from cuprates in electronic and magnetic properties, strong Coulomb interactions suggest that infinite-layer nickelates have a propensity towards various symmetry-breaking orders that populate cuprates7,8,9,10. Here we report the observation of charge density waves (CDWs) in infinite-layer NdNiO2 films using Ni L3 resonant X-ray scattering. Remarkably, CDWs form in Nd 5d and Ni 3d orbitals at the same commensurate wavevector (0.333, 0) reciprocal lattice units, with non-negligible out-of-plane dependence and an in-plane correlation length of up to ~60 Å. Spectroscopic studies reveal a strong connection between CDWs and Nd 5d–Ni 3d orbital hybridization. Upon entering the superconducting state at 20% Sr doping, the CDWs disappear. Our work demonstrates the existence of CDWs in infinite-layer nickelates with a multiorbital character distinct from cuprates, which establishes their low-energy physics.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: CDWs in the parent NdNiO2 thin film NNO2-1.
Fig. 2: Nd 5d–Ni 3d orbital hybridization and CDW in NdNiO2 and superconducting Nd0.8Sr0.2NiO2.
Fig. 3: L dependence of CDW in NdNiO2.
Fig. 4: Temperature dependence of CDW in NdNiO2.

Data availability

All data supporting the findings of this study are available in the Supplementary Information and are deposited in the Zenodo repository at Further information is available from the corresponding authors on reasonable request.


  1. Li, D. et al. Superconductivity in an infinite-layer nickelate. Nature 572, 624–627 (2019).

    CAS  Article  Google Scholar 

  2. Li, D. et al. Superconducting dome in Nd1−xSrxNiO2 infinite layer films. Phys. Rev. Lett. 125, 027001 (2020).

    CAS  Article  Google Scholar 

  3. Zeng, S. et al. Phase diagram and superconducting dome of infinite-layer Nd1−xSrxNiO2 thin films. Phys. Rev. Lett. 125, 147003 (2020).

    CAS  Article  Google Scholar 

  4. Osada, M., Wang, B. Y., Lee, K., Li, D. & Hwang, H. Y. Phase diagram of infinite layer praseodymium nickelate Pr1−xSrxNiO2 thin films. Phys. Rev. Mater. 4, 121801 (2020).

    CAS  Article  Google Scholar 

  5. Osada, M. et al. Nickelate superconductivity without rare-earth magnetism: (La,Sr)NiO2. Adv. Mater. 33, 2104083 (2021).

    CAS  Article  Google Scholar 

  6. Zeng, S. et al. Superconductivity in infinite-layer lanthanide nickelates. Sci. Adv. 8, eabl9927 (2022).

    CAS  Article  Google Scholar 

  7. Hepting, M. et al. Electronic structure of the parent compound of superconducting infinite-layer nickelates. Nat. Mater. 19, 381–385 (2020).

    CAS  Article  Google Scholar 

  8. Lu, H. et al. Magnetic excitations in infinite-layer nickelates. Science 365, 213–216 (2021).

    Article  Google Scholar 

  9. Tranquada, J., Sternlieb, B., Axe, J., Nakamura, Y. & Uchida, S. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375, 561–563 (1995).

    Article  Google Scholar 

  10. Ghiringhelli, G. et al. Long-range incommensurate charge fluctuations in (Y, Nd)Ba2Cu3O6+x. Science 337, 821–825 (2012).

    CAS  Article  Google Scholar 

  11. Lee, K.-W. & Pickett, W. Infinite-layer LaNiO2: Ni1+ is not Cu2+. Phys. Rev. B 70, 165109 (2004).

    Article  Google Scholar 

  12. Goodge, B. H. et al. Doping evolution of the Mott–Hubbard landscape in infinite-layer nickelates. Proc. Natl Acad. Sci. USA 118, e2007683118 (2021).

  13. Been, E. et al. Electronic structure trends across the rare-earth series in superconducting infinite-layer nickelates. Phys. Rev. X 11, 011050 (2021).

    CAS  Google Scholar 

  14. Hayward, M. & Rosseinsky, M. Synthesis of the infinite layer Ni (I) phase NdNiO2+x by low temperature reduction of NdNiO3 with sodium hydride. Solid State Sci. 5, 839–850 (2003).

    CAS  Article  Google Scholar 

  15. Yi, C. et al. NMR evidence of antiferromagnetic spin fluctuations in Nd0.85Sr0.15NiO2. Chin. Phys. Lett. 38, 067401 (2021).

    Article  Google Scholar 

  16. Fradkin, E., Kivelson, S. A. & Tranquada, J. M. Colloquium: theory of intertwined orders in high temperature superconductors. Rev. Mod. Phys. 87, 457 (2015).

    CAS  Article  Google Scholar 

  17. Rossi, M. et al. Orbital and spin character of doped carriers in infinite-layer nickelates. Phys. Rev. B 104, L220505 (2021).

    CAS  Article  Google Scholar 

  18. Chen, Z. et al. Electronic structure of superconducting nickelates probed by resonant photoemission spectroscopy. Matter 6, 1806–1815 (2022).

  19. Li, J. et al. Multiorbital charge-density wave excitations and concomitant phonon anomalies in Bi2Sr2LaCuO6+δ. Proc. Natl Acad. Sci. USA 117, 16219–16225 (2020).

    CAS  Article  Google Scholar 

  20. Sakakibara, H. et al. Model construction and a possibility of cupratelike pairing in a new d9 nickelate superconductor (Nd, Sr)NiO2. Phys. Rev. Lett. 125, 077003 (2020).

    CAS  Article  Google Scholar 

  21. Cheong, S.-W. et al. Charge-ordered states in (La, Sr)2NiO4 for hole concentrations nh=1/3 and 1/2. Phys. Rev. B 49, 7088 (1994).

    CAS  Article  Google Scholar 

  22. Zhang, J. et al. Stacked charge stripes in the quasi-2D trilayer nickelate La4Ni3O8. Proc. Natl Acad. Sci. USA 113, 8945–8950 (2016).

    CAS  Article  Google Scholar 

  23. Comin, R. & Damascelli, A. Resonant X-ray scattering studies of charge order in cuprates. Annu. Rev. Condens. Matter Phys. 7, 369–405 (2016).

    CAS  Article  Google Scholar 

  24. Miao, H. et al. High-temperature charge density wave correlations in La1.875Ba0.125CuO4 without spin–charge locking. Proc. Natl Acad. Sci. USA 114, 12430–12435 (2017).

    CAS  Article  Google Scholar 

  25. Arpaia, R. et al. Dynamical charge density fluctuations pervading the phase diagram of a Cu-based high-Tc superconductor. Science 365, 906–910 (2019).

    CAS  Article  Google Scholar 

  26. Grüner, G. The dynamics of charge-density waves. Rev. Mod. Phys. 60, 1129 (1988).

    Article  Google Scholar 

  27. Sakakibara, H., Usui, H., Kuroki, K., Arita, R. & Aoki, H. Two-orbital model explains the higher transition temperature of the single-layer Hg-cuprate superconductor compared to that of the La-cuprate superconductor. Phys. Rev. Lett. 105, 057003 (2010).

    Article  Google Scholar 

  28. Peng, Y. et al. Influence of apical oxygen on the extent of in-plane exchange interaction in cuprate superconductors. Nat. Phys. 13, 1201–1206 (2017).

    CAS  Article  Google Scholar 

  29. Rossi, M. et al. A broken translational symmetry state in an infinite-layer nickelate. Nat. Phys. (2022).

  30. Krieger, G. et al. Charge and spin order dichotomy in NdNiO2 driven by the capping layer. Phys. Rev. Lett. 129, 027002 (2022).

    CAS  Article  Google Scholar 

  31. Ding, X. et al. Stability of superconducting Nd0.8Sr0.2NiO2 thin films. Sci. China: Phys. Mech. Astron. 65, 267411 (2022).

    CAS  Article  Google Scholar 

  32. Lee, K. et al. Aspects of the synthesis of thin film superconducting infinite-layer nickelates. APL Mater. 8, 041107 (2020).

    CAS  Article  Google Scholar 

  33. Zhou, K.-J. et al. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. J. Synchrotron Radiat. 29, 563–580 (2022).

    CAS  Article  Google Scholar 

Download references


We thank M. Dean and W.-S. Lee for insightful discussions. All data were taken at the I21 RIXS beamline of Diamond Light Source (UK) using the RIXS spectrometer designed, built and owned by Diamond Light Source. We thank Diamond Light Source for providing beamtime under proposal ID NT30296. We acknowledge T. Rice for technical support throughout the experiments. C.C.T. acknowledges funding from Diamond Light Source and the University of Bristol under joint doctoral studentship no. STU0372. L.Q. and H.L. acknowledge support from NSFC (grant nos. 11774044, 52072059 and 11822411) and SPRP-B of CAS (grant no. XDB25000000). K.-J.Z. and H.L. acknowledge support from NSF of Beijing (grant no. JQ19002).

Author information

Authors and Affiliations



K.-J.Z. conceived and supervised the project. C.C.T., J.C., K.-J.Z., S.A., M.G.-F. and A.N. performed XAS and RIXS measurements. C.C.T., J.C. and K.-J.Z. analysed RIXS data. L.Q., X.D. and L.H. synthesized and characterized thin film samples. M.W. and P.G. performed STEM measurements. All authors contributed to the discussion and interpretation of results. K.-J.Z., C.C.T. and J.C. wrote the manuscript with comments from all authors.

Corresponding authors

Correspondence to Liang Qiao or Ke-Jin Zhou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–16, Table 1 and Notes 1–4.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tam, C.C., Choi, J., Ding, X. et al. Charge density waves in infinite-layer NdNiO2 nickelates. Nat. Mater. (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing