Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes

Abstract

The development of membranes that block solutes while allowing rapid water transport is of great importance. The microstructure of the membrane needs to be rationally designed at the molecular level to achieve precise molecular sieving and high water flux simultaneously. We report the design and fabrication of ultrathin, ordered conjugated-polymer-framework (CPF) films with thicknesses down to 1 nm via chemical vapour deposition and their performance as separation membranes. Our CPF membranes inherently have regular rhombic sub-nanometre (10.3 × 3.7 Å) channels, unlike membranes made of carbon nanotubes or graphene, whose separation performance depends on the alignment or stacking of materials. The optimized membrane exhibited a high water/NaCl selectivity of 6,900 and water permeance of 112 mol m−2 h−1 bar−1, and salt rejection >99.5% in high-salinity mixed-ion separations driven by osmotic pressure. Molecular dynamics simulations revealed that water molecules quickly and collectively pass through the membrane by forming a continuous three-dimensional network within the hydrophobic channels. The advent of ordered CPF provides a route towards developing carbon-based membranes for precise molecular separation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of sCPF films.
Fig. 2: Selective water and ion transport.
Fig. 3: Molecular simulations of water transport through the sCPF membrane.
Fig. 4: Comparison of separation mechanisms of sCPF and pCPF.

Similar content being viewed by others

Data availability

The data supporting the findings of this study are available within the paper and Supplementary Information. Source data are provided with this paper.

References

  1. Murata, K. et al. Structural determinants of water permeation through aquaporin-1. Nature 407, 599–605 (2000).

    Article  CAS  Google Scholar 

  2. Gouaux, E. & MacKinnon, R. Principles of selective ion transport in channels and pumps. Science 310, 1461–1465 (2005).

    Article  CAS  Google Scholar 

  3. Shen, J., Liu, G., Han, Y. & Jin, W. Artificial channels for confined mass transport at the sub-nanometre scale. Nat. Rev. Mater. 6, 294–312 (2021).

    Article  CAS  Google Scholar 

  4. Park, H. B., Kamcev, J., Robeson, L. M., Elimelech, M. & Freeman, B. D. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356, eaab0530 (2017).

    Article  Google Scholar 

  5. Li, H. et al. Na+-gated water-conducting nanochannels for boosting CO2 conversion to liquid fuels. Science 367, 667–671 (2020).

    Article  CAS  Google Scholar 

  6. Dakhchoune, M. et al. Gas-sieving zeolitic membranes fabricated by condensation of precursor nanosheets. Nat. Mater. 20, 362–369 (2021).

    Article  CAS  Google Scholar 

  7. Liu, G. et al. Mixed matrix formulations with MOF molecular sieving for key energy-intensive separations. Nat. Mater. 17, 283–289 (2018).

    Article  CAS  Google Scholar 

  8. Tan, R. et al. Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage. Nat. Mater. 19, 195–202 (2020).

    Article  CAS  Google Scholar 

  9. Di Vincenzo, M. et al. Biomimetic artificial water channel membranes for enhanced desalination. Nat. Nanotech. 16, 190–196 (2021).

    Article  Google Scholar 

  10. Song, W. et al. Artificial water channels enable fast and selective water permeation through water-wire networks. Nat. Nanotech. 15, 73–79 (2020).

    Article  CAS  Google Scholar 

  11. Zhang, W.-H. et al. Graphene oxide membranes with stable porous structure for ultrafast water transport. Nat. Nanotech. 16, 337–343 (2021).

    Article  Google Scholar 

  12. Yang, Y. et al. Large-area graphene-nanomesh/carbon-nanotube hybrid membranes for ionic and molecular nanofiltration. Science 364, 1057–1062 (2019).

    Article  CAS  Google Scholar 

  13. Ding, L. et al. Effective ion sieving with Ti3C2Tx MXene membranes for production of drinking water from seawater. Nat. Sustain. 3, 296–302 (2020).

    Article  Google Scholar 

  14. Ali, Z. et al. Finely tuned submicroporous thin-film molecular sieve membranes for highly efficient fluid separations. Adv. Mater. 32, 2001132 (2020).

    Article  CAS  Google Scholar 

  15. Lu, J. et al. Efficient metal ion sieving in rectifying subnanochannels enabled by metal–organic frameworks. Nat. Mater. 19, 767–774 (2020).

    Article  CAS  Google Scholar 

  16. Marcotte, A., Mouterde, T., Niguès, A., Siria, A. & Bocquet, L. Mechanically activated ionic transport across single-digit carbon nanotubes. Nat. Mater. 19, 1057–1061 (2020).

    Article  CAS  Google Scholar 

  17. Feng, J. et al. Single-layer MoS2 nanopores as nanopower generators. Nature 536, 197 (2016).

    Article  CAS  Google Scholar 

  18. Werber, J. R., Osuji, C. O. & Elimelech, M. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1, 16018 (2016).

    Article  CAS  Google Scholar 

  19. Joseph, S. & Aluru, N. R. Why are carbon nanotubes fast transporters of water? Nano Lett. 8, 452–458 (2008).

    Article  CAS  Google Scholar 

  20. Chen, L. et al. Ion sieving in graphene oxide membranes via cationic control of interlayer spacing. Nature 550, 380–383 (2017).

    Article  CAS  Google Scholar 

  21. Tunuguntla, R. H. et al. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357, 792–796 (2017).

    Article  CAS  Google Scholar 

  22. Secchi, E. et al. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537, 210 (2016).

    Article  CAS  Google Scholar 

  23. Gopinadhan, K. et al. Complete steric exclusion of ions and proton transport through confined monolayer water. Science 363, 145–148 (2019).

    Article  CAS  Google Scholar 

  24. Nessim, G. D. et al. Tuning of vertically-aligned carbon nanotube diameter and areal density through catalyst pre-treatment. Nano Lett. 8, 3587–3593 (2008).

    Article  CAS  Google Scholar 

  25. Shen, J. et al. Subnanometer two-dimensional graphene oxide channels for ultrafast gas sieving. ACS Nano 10, 3398–3409 (2016).

    Article  CAS  Google Scholar 

  26. Qiu, H., Xue, M., Shen, C., Zhang, Z. & Guo, W. Graphynes for water desalination and gas separation. Adv. Mater. 31, 1803772 (2019).

    Article  CAS  Google Scholar 

  27. Moreno, C. et al. Bottom-up synthesis of multifunctional nanoporous graphene. Science 360, 199–203 (2018).

    Article  CAS  Google Scholar 

  28. Xu, C. et al. Two-dimensional polyphenylene networks with tunable micropores for hydrogen storage. ACS Sustain. Chem. Eng. 7, 18341–18349 (2019).

    Article  CAS  Google Scholar 

  29. Bartolomei, M. et al. Graphdiyne pores: ‘ad hoc’ openings for helium separation applications. J. Phys. Chem. C. 118, 29966–29972 (2014).

    Article  CAS  Google Scholar 

  30. Bartolomei, M. et al. Penetration barrier of water through graphynes’ pores: first-principles predictions and force field optimization. J. Phys. Chem. Lett. 5, 751–755 (2014).

    Article  CAS  Google Scholar 

  31. Yu, H., Xue, Y. & Li, Y. Graphdiyne and its assembly architectures: synthesis, functionalization, and applications. Adv. Mater. 31, 1803101 (2019).

    Article  CAS  Google Scholar 

  32. Grill, L. & Hecht, S. Covalent on-surface polymerization. Nat. Chem. 12, 115–130 (2020).

    Article  CAS  Google Scholar 

  33. Galeotti, G. et al. Synthesis of mesoscale ordered two-dimensional π-conjugated polymers with semiconducting properties. Nat. Mater. 19, 874–880 (2020).

    Article  CAS  Google Scholar 

  34. Grossmann, L. et al. On-surface photopolymerization of two-dimensional polymers ordered on the mesoscale. Nat. Chem. 13, 730–736 (2021).

    Article  CAS  Google Scholar 

  35. Zhou, J., Li, J., Liu, Z. & Zhang, J. Exploring approaches for the synthesis of few-layered graphdiyne. Adv. Mater. 31, 1803758 (2019).

    Article  CAS  Google Scholar 

  36. He, J. et al. Hydrogen substituted graphdiyne as carbon-rich flexible electrode for lithium and sodium ion batteries. Nat. Commun. 8, 1172 (2017).

    Article  Google Scholar 

  37. Zhang, Y. Q. et al. Homo-coupling of terminal alkynes on a noble metal surface. Nat. Commun. 3, 1286 (2012).

    Article  Google Scholar 

  38. Radha, B. et al. Molecular transport through capillaries made with atomic-scale precision. Nature 538, 222–225 (2016).

    Article  CAS  Google Scholar 

  39. Liu, R. et al. Chemical vapor deposition growth of linked carbon monolayers with acetylenic scaffoldings on silver foil. Adv. Mater. 29, 1604665 (2017).

    Article  Google Scholar 

  40. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu (111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  41. Abraham, J. et al. Tunable sieving of ions using graphene oxide membranes. Nat. Nanotech. 12, 546–550 (2017).

    Article  CAS  Google Scholar 

  42. Qian, Y. et al. Enhanced ion sieving of graphene oxide membranes via surface amine functionalization. J. Am. Chem. Soc. 143, 5080–5090 (2021).

    Article  CAS  Google Scholar 

  43. Ries, L. et al. Enhanced sieving from exfoliated MoS2 membranes via covalent functionalization. Nat. Mater. 18, 1112–1117 (2019).

    Article  CAS  Google Scholar 

  44. Sapkota, B. et al. High permeability sub-nanometre sieve composite MoS2 membranes. Nat. Commun. 11, 2747 (2020).

    Article  CAS  Google Scholar 

  45. O’Hern, S. C. et al. Nanofiltration across defect-sealed nanoporous monolayer graphene. Nano Lett. 15, 3254–3260 (2015).

    Article  Google Scholar 

  46. Lokesh, M., Youn, S. K. & Park, H. G. Osmotic transport across surface functionalized carbon nanotube membrane. Nano Lett. 18, 6679–6685 (2018).

    Article  CAS  Google Scholar 

  47. Jian, M. et al. Ultrathin water-stable metal-organic framework membranes for ion separation. Sci. Adv. 6, eaay3998 (2020).

    Article  CAS  Google Scholar 

  48. Liu, H., Wang, H. & Zhang, X. Facile fabrication of freestanding ultrathin reduced graphene oxide membranes for water purification. Adv. Mater. 27, 249–254 (2015).

    Article  Google Scholar 

  49. Ma, D., Peh, S. B., Han, G. & Chen, S. B. Thin-film nanocomposite (TFN) membranes incorporated with super-hydrophilic metal–organic framework (MOF) UiO-66: toward enhancement of water flux and salt rejection. ACS Appl. Mater. Interfaces 9, 7523–7534 (2017).

    Article  CAS  Google Scholar 

  50. Ma, N., Wei, J., Liao, R. & Tang, C. Y. Zeolite–polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis. J. Membr. Sci. 405–406, 149–157 (2012).

    Article  Google Scholar 

  51. Ren, J. & McCutcheon, J. R. A new commercial thin film composite membrane for forward osmosis. Desalination 343, 187–193 (2014).

    Article  CAS  Google Scholar 

  52. Bregante, D. T. et al. The shape of water in zeolites and its impact on epoxidation catalysis. Nat. Catal. 4, 797–808 (2021).

    Article  CAS  Google Scholar 

  53. Yuan, Y. D. et al. Porous organic cages as synthetic water channels. Nat. Commun. 11, 4927 (2020).

    Article  CAS  Google Scholar 

  54. Villalobos, L. F. et al. Bottom-up synthesis of graphene films hosting atom-thick molecular-sieving apertures. Proc. Natl Acad. Sci. USA 118, e2022201118 (2021).

    Article  CAS  Google Scholar 

  55. Wu, M. et al. Seeded growth of large single-crystal copper foils with high-index facets. Nature 581, 406–410 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support for this work was provided by Baseline Funds (BAS/1/1372-01-01) to Y.H. from King Abdullah University of Science and Technology (KAUST), to J.J. from the A*STAR AME IRG Grant (A20E5c0092), the Ministry of Education of Singapore and the National University of Singapore (R-279-000-598-114 and R-279-000-574-114). This work was also partially supported by the National Key Research and Development Project of China (2022YFE0113800). V.T. and Y.C. are indebted to the support from the KAUST Office of Sponsored Research (OSR) under award number OSR-2018-CARF/CCF-3079. V.T. acknowledges support from KAUST Solar Center (KSC). This research used resources of the Core Laboratories of KAUST. We acknowledge helpful discussions with Q. Li and J. Wang from Soochow University; J. Yin, Y. Wan and L. Chen from KAUST, and Y. Zhang from Nanjing Tech University.

Author information

Authors and Affiliations

Authors

Contributions

Y.H., V.T. and J.J. conceived and designed the experiments. J.S, Y.C., C.Z., C.C., L.L., Y.M., X.D., J.-H.F., C.-C.T. and J.L. performed the synthesis of CPF materials, characterizations and transport measurements. W.W. performed the molecular dynamics simulations and K.Y. conducted the density-functional theory calculations. Y.W., I.P., X.Z. and L.L. provided constructive opinion and suggestions. All authors were involved in the analysis and discussion of the results. Y.H., J.J., V.T. and I.P. wrote the manuscript and all authors commented on the manuscript.

Corresponding authors

Correspondence to Jianwen Jiang, Ingo Pinnau, Vincent Tung or Yu Han.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Damien Voiry, Xiwang Zhang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Figs. 1–34, Tables 1–4, notes 1–3 and references 1–83.

Supplementary Video 1

Water molecules moving in the channels to form a regular 3D network inside the membrane.

Source data

Source Data Fig. 1

Source Data for Figures 1d–1g.

Source Data Fig. 2

Source Data for Figure 2d.

Source Data Fig. 3

Source Data for Figure 3a.

Source Data Fig. 4

Source Data for Figures 4c, 4e and 4f.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shen, J., Cai, Y., Zhang, C. et al. Fast water transport and molecular sieving through ultrathin ordered conjugated-polymer-framework membranes. Nat. Mater. 21, 1183–1190 (2022). https://doi.org/10.1038/s41563-022-01325-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01325-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing