Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal

Abstract

Sliding ferroelectricity is a recently observed polarity existing in two-dimensional materials. However, due to the weak polarization and poor electrical insulation in these materials, existing experimental evidences are indirect and mostly based on nanoscale transport properties or piezoresponse force microscopy. We report the direct observation of sliding ferroelectricity, using a high-quality amphidynamic single crystal (15-crown-5)Cd3Cl6, which possesses a large bandgap and so allows direct measurement of polarization–electric field hysteresis. This coordination polymer is a van der Waals material, which is composed of inorganic stators and organic rotators as determined by X-ray diffraction and NMR characterization. From density functional theory calculations, we find that after freezing the rotators, an electric dipole is generated in each layer driven by the geometric mechanism, while a comparable ferroelectric polarization originates from the interlayer sliding. The net polarization of these two components can be directly measured and manipulated. Our finding provides insight into low-dimensional ferroelectrics, especially control of the synchronous dynamics of rotating molecules and sliding layers in solids.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure of CCC.
Fig. 2: Characterization of ferroelectricity.
Fig. 3: PFM characterization and manipulation of ferroelectric domains.
Fig. 4: Schematic of geometric ferroelectricity.
Fig. 5: Schematic of sliding ferroelectricity.

Similar content being viewed by others

Data availability

The experimental cif files can be found in CCDC (1875017-1875018 and 2160711-2160716). The experimental and DFT optimized structural files were also uploaded as supplementary files. Source data for figures in main text and supplemental information of this paper are available at https://figshare.com/articles/dataset/Direct_observation_of_geometric_and_sliding_ferroelectricity_in_an_amphidynamic_crystal/20102213. Other data supporting these findings are available from the corresponding authors upon request. Source data are provided with this paper.

References

  1. Qi, L., Ruan, S. & Zeng, Y. Review on recent developments in 2D ferroelectrics: theories and applications. Adv. Mater. 33, 2005098 (2021).

    Article  CAS  Google Scholar 

  2. Wu, M. Two-dimensional van der Waals ferroelectrics: scientific and technological opportunities. ACS Nano 15, 9229–9237 (2021).

    Article  Google Scholar 

  3. Guan, Z. et al. Recent progress in two-dimensional ferroelectric materials. Adv. Electron. Mater. 6, 1900818 (2020).

    Article  CAS  Google Scholar 

  4. Chang, K. et al. Discovery of robust in-plane ferroelectricity in atomic-thick SnTe. Science 353, 274–278 (2016).

    Article  CAS  Google Scholar 

  5. Liu, F. et al. Room-temperature ferroelectricity in CuInP2S6 ultrathin flakes. Nat. Commun. 7, 12357 (2016).

    Article  CAS  Google Scholar 

  6. Zhou, Y. et al. Out-of-plane piezoelectricity and ferroelectricity in layered α-In2Se3 Nano flakes. Nano Lett. 17, 5508–5513 (2017).

    Article  CAS  Google Scholar 

  7. You, L. et al. Origin of giant negative piezoelectricity in a layered van der Waals ferroelectric. Sci. Adv. 5, eaav3780 (2019).

    Article  CAS  Google Scholar 

  8. Wu, M. & Li, J. Sliding ferroelectricity in 2D van der Waals materials: related physics and future opportunities. Proc. Natl Acad. Sci. USA 118, e2115703118 (2021).

    Article  Google Scholar 

  9. Li, L. & Wu, M. Binary compound bilayer and multilayer with vertical polarizations: two-dimensional ferroelectrics, multiferroics, and nanogenerators. ACS Nano 11, 6382–6388 (2017).

    Article  CAS  Google Scholar 

  10. Fei, Z. et al. Ferroelectric switching of a two-dimensional metal. Nature 560, 336–339 (2018).

    Article  CAS  Google Scholar 

  11. Sharma, P. et al. A room-temperature ferroelectric semimetal. Sci. Adv. 5, eaax5080 (2019).

    Article  CAS  Google Scholar 

  12. Xiao, J. et al. Berry curvature memory through electrically driven stacking transitions. Nat. Phys. 16, 1028–1034 (2020).

    Article  CAS  Google Scholar 

  13. Yasuda, K., Wang, X., Watanabe, K., Taniguchi, T. & Jarillo-Herrero, P. Stacking-engineered ferroelectricity in bilayer boron nitride. Science 372, 1458–1462 (2021).

    Article  CAS  Google Scholar 

  14. Stern, M. V. et al. Interfacial ferroelectricity by van der Waals sliding. Science 372, 1462–1466 (2021).

    Article  Google Scholar 

  15. Wan, Y. et al. Room-temperature ferroelectricity in 1T′-ReS2 multilayers. Phys. Rev. Lett. 128, 067601 (2022).

    Article  CAS  Google Scholar 

  16. Wang, X. et al. Interfacial ferroelectricity in rhombohedral-stacked bilayer transition metal dichalcogenides. Nat. Nanotech. https://doi.org/10.1038/s41565-021-01059-z (2022).

  17. Wang, Z. et al. Ferroelectricity in strained Hf2CF2 monolayer. Phys. Rev. Mater. 5, 074408 (2021).

    Article  CAS  Google Scholar 

  18. Zhang, W. & Xiong, R.-G. Ferroelectric metal–organic frameworks. Chem. Rev. 112, 1163–1195 (2012).

    Article  CAS  Google Scholar 

  19. Horiuchi, S. & Tokura, Y. Organic ferroelectrics. Nat. Mater. 7, 357–366 (2008).

    Article  CAS  Google Scholar 

  20. Czarnecki, P., Nawrocik, W., Pajak, Z. & Wasicki, J. Ferroelectric properties of pyridinium tetrafluoroborate. Phys. Rev. B 49, 1511–1512 (1994).

    Article  CAS  Google Scholar 

  21. Liao, W. Q. et al. A lead-halide perovskite molecular ferroelectric semiconductor. Nat. Commun. 6, 7338 (2015).

    Article  Google Scholar 

  22. Fu, D. W. et al. Diisopropylammonium chloride: a ferroelectric organic salt with a high phase transition temperature and practical utilization level of spontaneous polarization. Adv. Mater. 23, 5658–5662 (2011).

    Article  CAS  Google Scholar 

  23. Zhang, Y. et al. Highly efficient red-light emission in an organic–inorganic hybrid ferroelectric: (pyrrolidinium)MnCl3. J. Am. Chem. Soc. 137, 4928–4931 (2015).

    Article  CAS  Google Scholar 

  24. Ye, H. Y. et al. Bandgap engineering of lead-halide perovskite-type ferroelectrics. Adv. Mater. 28, 2579–2586 (2016).

    Article  CAS  Google Scholar 

  25. Harada, J. et al. Directionally tunable and mechanically deformable ferroelectric crystals from rotating polar globular ionic molecules. Nat. Chem. 8, 946–952 (2016).

    Article  CAS  Google Scholar 

  26. You, Y. M. et al. An organic-inorganic perovskite ferroelectric with large piezoelectric response. Science 357, 306–309 (2017).

    Article  CAS  Google Scholar 

  27. Ye, H. Y. et al. Metal-free three-dimensional perovskite ferroelectrics. Science 361, 151–155 (2018).

    Article  CAS  Google Scholar 

  28. Fu, D. W. et al. 4-Methoxyanilinium perrhenate 18-crown-6: A new ferroelectric with order originating in swinglike motion slowing down. Phys. Rev. Lett. 110, 257601 (2013).

    Article  Google Scholar 

  29. Fu, D. W. et al. Supramolecular bola-like ferroelectric: 4-methoxyanilinium tetrafluoroborate-18-crown-6. J. Am. Chem. Soc. 133, 12780–12786 (2011).

    Article  CAS  Google Scholar 

  30. Akutagawa, T. et al. Ferroelectricity and polarity control in solid-state flip-flop supramolecular rotators. Nat. Mater. 8, 342–347 (2009).

    Article  CAS  Google Scholar 

  31. Hazell, A., Hazell, R. G., Holm, M. F. & Krogh, L. Structures of the 3:1 adducts of cadmium(II) bromide and of cadmium(II) chloride with 15-crown-5 ether: structural changes induced by radiation. Acta Crystallogr. 47, 234–239 (1991).

    Article  Google Scholar 

  32. Fu, X. B. et al. Revealing structure and dynamics in host–guest supramolecular crystalline polymer electrolytes by solid-state NMR: applications to β-CD-polyether/Li+ crystal. Polymer 105, 310–317 (2016).

    Article  CAS  Google Scholar 

  33. Rothwell, W. P., Shen, W. X. & Lunsford, J. H. 31P Solid-state NMR of a chemisorbed phosphonium ion in HY zeolite: observation of 1H-31P J coupling in the solid state. J. Am. Chem. Soc. 106, 2452–2453 (1984).

    Article  CAS  Google Scholar 

  34. Shi, C., Zhang, X., Cai, Y., Yao, Y.-F. & Zhang, W. A chemically triggered and thermally switched dielectric constant transition in a metal cyanide based crystal. Angew. Chem. 127, 6304–6308 (2015).

    Article  Google Scholar 

  35. Schmidt-Rohr, K. & Spiess, H. W. Multidimensional Solid-state NMR and Polymers (Academic Press, 1994).

  36. Levitt, M. H. Spin Dynamics: Basics of Nuclear Magnetic Resonance. (John Wiley, 2001).

  37. Kurtz, S. K. & Perry, T. T. A powder technique for the evaluation of nonlinear optical materials. J. Appl. Phys. 39, 3798–3813 (1968).

    Article  CAS  Google Scholar 

  38. Lines, M. E. & Glass., A. M. Principles and Applications of Ferroelectrics and Related Materials (Oxford University Press, 1977).

  39. Czapla, Z. & Grigas, J. Microwave dielectric dispersion in diglycine nitrate. Ferroelectrics 100, 187–194 (1989).

    Article  Google Scholar 

  40. Van Aken, B. B., Palstra, T. T. M., Filippetti, A. & Spaldin, N. A. The origin of ferroelectricity in magnetoelectric YMnO3. Nat. Mater. 3, 164–170 (2004).

    Article  Google Scholar 

  41. Rondinelli, J. M., Eidelson, A. S. & Spaldin, N. A. Non-d0 Mn-driven ferroelectricity in antiferromagnetic BaMnO3. Phys. Rev. B 79, 205119 (2009).

    Article  Google Scholar 

  42. Benedek, N. A. & Fennie, C. J. Hybrid improper ferroelectricity: a mechanism for controllable polarization–magnetization coupling. Phys. Rev. Lett. 106, 107204 (2011).

    Article  Google Scholar 

  43. Oh, Y. S., Luo, X., Huang, F.-T., Wang, Y.-Z. & Cheong, S.-W. Experimental demonstration of hybrid improper ferroelectricity and the presence of abundant charged walls in (Ca,Sr)3Ti2O7. crystals. Nat. Mater. 14, 407 (2015).

    Article  CAS  Google Scholar 

  44. Liu, M. F. et al. Direct observation of ferroelectricity in Ca3Mn2O7 and its prominent light absorption. Appl. Phys. Lett. 113, 022902 (2018).

    Article  Google Scholar 

  45. Ding, N. et al. Phase competition and negative piezoelectricity in interlayer-sliding ferroelectric ZrI2. Phys. Rev. Mater. 5, 084405 (2021).

    Article  CAS  Google Scholar 

  46. Larson, A. C. & Von Dreele, R. B. General Structure Analysis System (GSAS) (Los Alamos National Laboratory Report LAUR 86-748, 1994).

  47. Spek, A. L. PLATON, A Multipurpose Crystallographic Tool (Utrecht University, 2001); http://www.cryst.chem.uu.nl/platon/

  48. Fukunaga, M. & Noda, Y. New technique for measuring ferroelectric and antiferroelectric hysteresis loops. J. Phys. Soc. Jpn. 77, 64706 (2008).

    Article  Google Scholar 

  49. Liu, S. F., Mao, J. D. & Schmidt-Rohr, K. A robust technique for two-dimensional separation of undistorted chemical-shift anisotropy powder patterns in magic-angle-spinning NMR. J. Magn. Reson. 155, 15–28 (2002).

    Article  CAS  Google Scholar 

  50. Kresse, G. & Furthmu, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  51. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  52. Grimme, S., Antony, J. & Ehrlich, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H–Pu. J. Chem. Phys. 132, 154104 (2010).

    Article  Google Scholar 

  53. Resta, R. Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev. Mod. Phys. 66, 899–915 (1994).

    Article  CAS  Google Scholar 

  54. King-Smith, R. D. & Vanderbilt, D. Theory of polarization of crystalline solids. Phys. Rev. B 47, 1651–1654 (1993).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank D.-W. Fu and H.-F. Lu for their suggestions on project conception and structural analysis, and X. Liu, Z. Sheng and M. Liu for their kind help on SHG analysis and Rietveld refinement. Y.Z. acknowledges support from the National Key Research and Development Program of China (grant number 2017YFA0204800) and the Open Project of Shanghai Key Laboratory of Magnetic Resonance (grant number 2018004). S.D. acknowledges support from National Natural Science Foundation of China (grant number 11834002). L.-P.M. acknowledges support from the Jiangxi Provincial Key Laboratory of Functional Molecular Materials Chemistry (grant number 20212BCD42018). Y.-F.Y. acknowledges support from the Xing-Fu-Zhi-Hua Foundation of ECNU. We thank the Big Data Center of Southeast University for providing the facility support on the numerical calculations.

Author information

Authors and Affiliations

Authors

Contributions

Y.Z. and S.D. conceived the project. Y.Z. designed the experiments. S.D. proposed the theoretical mechanisms. L.-P.M. prepared the samples and performed the DSC and SHG measurements. N.W. contributed to PFM measurements. C.S. and H.-Y.Y. contributed to single-crystal measurement and analysis. Y.-F.Y. performed the NMR measurement and analysis. N.D. performed the DFT calculations guided by S.D. L.L. contributed to the analysis of PFM. S.D. and Y.Z. wrote the manuscript, with inputs from all other authors.

Corresponding authors

Correspondence to Shuai Dong or Yi Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Sarah Guerin and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–3, Figs. 1–14, Tables 1–5 and references 1 and 2

Crystallographic Data 1

Crystal structures of CCC form 253 K to 343 K by experiment

Crystallographic Data 1

CheckCIF/PLATON report

Computational Data 1

Crystal structure of “0+” state by DFT calculation

Computational Data 2

Crystal structure of “+P” state by DFT calculation

Computational Data 3

Crystal structure of “monolayer A” state by DFT calculation

Computational Data 4

Crystal structure of “monolayer B” state by DFT calculation

Computational Data 5

Crystal structure of “0-” state by DFT calculation

Computational Data 6

Crystal structure of “-P” state by DFT calculation

Source data

Source Data Fig. 1

Statistical Source Data

Source Data Fig. 2

Statistical Source Data

Source Data Fig. 3

Statistical Source Data

Source Data Fig. 4

Statistical Source Data

Source Data Fig. 5

Statistical Source Data

Source Data Fig. S2

Statistical Source Data

Source Data Fig. S3

Statistical Source Data

Source Data Fig. S4

Statistical Source Data

Source Data Fig. S7

Statistical Source Data

Source Data Fig. S8

Statistical Source Data

Source Data Fig. S9

Statistical Source Data

Source Data Fig. S13

Statistical Source Data

Source Data Fig. S14

Statistical Source Data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Miao, LP., Ding, N., Wang, N. et al. Direct observation of geometric and sliding ferroelectricity in an amphidynamic crystal. Nat. Mater. 21, 1158–1164 (2022). https://doi.org/10.1038/s41563-022-01322-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01322-1

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing