Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength

Abstract

Fast development of space technologies poses a strong challenge for elastic materials, which need to be not only lightweight, strong and compliant, but also able to maintain stable elasticity over a wide temperature range1,2,3,4. Here we report a lightweight magnesium–scandium strain glass alloy (Mg with 21.3 at.% Sc) that meets this challenge. This alloy is as light (density ~2 g cm–3) and compliant as organic-based materials5,6,7 like bones and glass fibre reinforced plastics, but in contrast with those materials, it possesses a nearly temperature-independent (or Elinvar-type), ultralow Young’s modulus (~20–23 GPa) over a wide temperature range from room temperature down to 123 K; a higher yield strength of ~200–270 MPa; and a long fatigue life of over one million cycles. As a result, it exhibits a relatively high, temperature-independent elastic energy density of ~0.5 kJ kg–1 among known materials at a moderate stress level of 200 MPa. We show that its exceptional properties stem from a strain glass transition, and the Elinvar-type elasticity originates from its moderate elastic softening effect cancelling out the ever-present elastic hardening. Our findings provide insight into designing materials that possess unconventional and technologically important elastic properties.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Elastic and mechanical properties of the Mg-21.3Sc strain glass at room temperature.
Fig. 2: Elinvar-type elasticity of the Mg-21.3Sc strain glass alloy over a wide temperature range.
Fig. 3: Macroscopic signatures of strain glass transition in Mg-21.3Sc alloy (SQ).
Fig. 4: Evidence for local symmetry breaking in Mg-21.3Sc strain glass alloy (SQ).
Fig. 5: In situ dark-field TEM observation of smooth evolution of nanodomains in Mg-21.3Sc strain glass alloy (SQ).

Data availability

All data generated or analysed during this study are included in the published article and Supplementary Information and are available from the corresponding authors upon request.

References

  1. Xia, J. et al. Iron-based superelastic alloys with near-constant critical stress temperature dependence. Science 369, 855–858 (2020).

    CAS  Article  Google Scholar 

  2. Scott, A. S. & Sherwood, B. Out of This World: The New Field of Space Architecture (American Institute of Aeronautics and Astronautics, 2009).

  3. Lesser, D. H., Logan, G. & Christopher, K. W. Active optical correctors for large inflatable telescopes. IEEE Trans. Terahertz Sci. Technol. 9, 409–416 (2019).

    CAS  Article  Google Scholar 

  4. NASA Science. Solar System Exploration http://solarsystem.nasa.gov/resources/925/solar-systemand-beyond-poster-set/ (2019).

  5. Tagliaferri, V., Caprino, G. & Diterlizzi, A. Effect of drilling parameters on the finish and mechanical properties of GFRP composites. Int. J. Mach. Tool. Man. 30, 77–84 (1990).

    Article  Google Scholar 

  6. Ramesh, M., Palanikumar, K. & Reddy, K. H. Mechanical property evaluation of sisal–jute–glass fiber reinforced polyester composites. Compos. B Eng. 48, 1–9 (2013).

    CAS  Article  Google Scholar 

  7. Chen, Q. & Thouas, G. A. Metallic implant biomaterials. Mat. Sci. Eng. R 87, 1–57 (2015).

    Article  Google Scholar 

  8. Ashby, M. F. Materials Selection in Mechanical Design 4th edn (Elsevier, 2011).

  9. Lecce, L. & Concilio, A. (eds) Shape Memory Alloy Engineering: for Aerospace, Structural and Biomedical Applications (Elsevier, 2015).

  10. Suh, B. C., Shim, M. S., Shin, K. S. & Kim, N. J. Current issues in magnesium sheet alloys: where do we go from here? Scr. Mater. 84–85, 1–6 (2014).

    Article  Google Scholar 

  11. Huang, X., Suzuki, K., Chino, Y. & Mabuchi, M. Texture and stretch formability of AZ61 and AM60 magnesium alloy sheets processed by high-temperature rolling. J. Alloy Compd. 632, 94–102 (2015).

    CAS  Article  Google Scholar 

  12. Bian, M. Z. et al. A heat-treatable Mg–Al–Ca–Mn–Zn sheet alloy with good room temperature formability. Scr. Mater. 138, 151–155 (2017).

    CAS  Article  Google Scholar 

  13. Bhattacharjee, T. et al. High strength and formable Mg–6.2Zn–0.5Zr–0.2Ca alloy sheet processed by twin roll casting. Mat. Sci. Eng. A 609, 154–160 (2014).

    CAS  Article  Google Scholar 

  14. Yuasa, M., Miyazawa, N., Hayashi, M., Mabuchi, M. & Chino, Y. Effects of group II elements on the cold stretch formability of Mg–Zn alloys. Acta Mater. 83, 294–303 (2015).

    CAS  Article  Google Scholar 

  15. Huang, X., Suzuki, K., Chino, Y. & Mabuchi, M. Influence of aluminum content on the texture and sheet formability of AM series magnesium alloys. Mat. Sci. Eng. A 633, 144–153 (2015).

    CAS  Article  Google Scholar 

  16. Zou, Y. et al. Texture evolution and their effects on the mechanical properties of duplex Mg–Li alloy. J. Alloy Compd. 669, 72–78 (2016).

    CAS  Article  Google Scholar 

  17. Zou, Y. et al. Deformation mode transition of Mg3Li alloy: an in situ neutron diffraction study. J. Alloy Compd. 685, 331–336 (2016).

    CAS  Article  Google Scholar 

  18. Askariani, S. A. & Pishbin, S. M. H. Hot deformation behavior of Mg-4Li-1Al alloy via hot compression tests. J. Alloy Compd. 688, 1058–1065 (2016).

    CAS  Article  Google Scholar 

  19. Kada, S. R. et al. In-situ X-ray diffraction studies of slip and twinning in the presence of precipitates in AZ91 alloy. Acta Mater. 119, 145–156 (2016).

    CAS  Article  Google Scholar 

  20. Agnew, S. R., Yoo, M. H. & Tomé, C. N. Application of texture simulation to understanding mechanical behavior of Mg and solid solution alloys containing Li or Y. Acta Mater. 49, 4277–4289 (2011).

    Article  Google Scholar 

  21. Barnett, M. R. et al. Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 5093–5103 (2004).

    CAS  Article  Google Scholar 

  22. Bohlen, J. et al. The texture and anisotropy of magnesium–zinc–rare earth alloy sheets. Acta Mater. 55, 2101–2112 (2007).

    CAS  Article  Google Scholar 

  23. Newnham, R. E. Properties of Materials: Anisotropy, Symmetry, Structure (Oxford Univ. Press, 2004).

  24. Ogawa, Y., Ando, D., Sutou, Y. & Koike, J. A lightweight shape-memory magnesium alloy. Science 353, 368–370 (2016).

    CAS  Article  Google Scholar 

  25. Otsuka, K. & Wayman, C. M. Shape Memory Materials (Cambridge Univ. Press, 1998).

  26. Saito, T. et al. Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464–467 (2003).

    CAS  Article  Google Scholar 

  27. Zhu, J. et al. Making metals linear super-elastic with ultralow modulus and nearly zero hysteresis. Mater. Horiz. 6, 515–523 (2019).

    CAS  Article  Google Scholar 

  28. Herbert, E. G., Pharr, G. M., Oliver, W. C., Lucas, B. N. & Hay, J. L. On the measurement of stress–strain curves by spherical indentation. Thin Solid Films 398, 331–335 (2001).

    Article  Google Scholar 

  29. Guo, Y., Xie, J., Zheng, W. & Li, J. Effects of steel slag as fine aggregate on static and impact behaviours of concrete. Constr. Build. Mater. 192, 194–201 (2018).

    Article  Google Scholar 

  30. Henry S. D. et al. Fatigue Data Book: Light Structural Alloys (ASM International, 1995).

  31. Ferdous, W. et al. Testing and modelling the fatigue behaviour of GFRP composites – effect of stress level, stress concentration and frequency. Eng. Sci. Technol. 23, 1223–1232 (2020).

    Google Scholar 

  32. Merati, A. A study of nucleation and fatigue behavior of an aerospace aluminum alloy 2024-T3. Int. J. Fatigue 27, 33–44 (2005).

    CAS  Article  Google Scholar 

  33. Guillaume, C. E. Discovery of the anomaly. Proc. Phys. Soc. 32, 374–404 (1920).

    CAS  Google Scholar 

  34. Liu, C., Ji, Y. & Ren, X. Strain glass and novel properties. Shape Mem. Superelasticity 5, 299–312 (2019).

    Article  Google Scholar 

  35. Zhou, Y. et al. Direct evidence for local symmetry breaking during a strain glass transition. Phys. Rev. Lett. 112, 025701 (2014).

    Article  Google Scholar 

  36. Wang, Y. et al. Strain glass transition in a multifunctional β-type Ti alloy. Sci. Rep. 4, 3995 (2014).

    Article  Google Scholar 

  37. Ogawa, Y., Ando, D., Sutou, Y., Somekawa, H. & Koike, J. Martensitic transformation in a β-type Mg–Sc alloy. Shape Mem. Superelasticity 4, 167–173 (2018).

    Article  Google Scholar 

  38. Zhang, L., Wang, D. & Ren, X. A new mechanism for low and temperature-independent elastic modulus. Sci. Rep. 5, 11477 (2015).

    CAS  Article  Google Scholar 

  39. Zeng, Z. et al. Magnesium extrusion alloys: a review of developments and prospects. Int. Mater. Rev. 64, 27–62 (2019).

    CAS  Article  Google Scholar 

  40. Lord, J. D. & Morrell, R. M. Elastic modulus measurement—obtaining reliable data from the tensile test. Metrologia 47, S41 (2010).

    Article  Google Scholar 

  41. Hao, Y. L. et al. Elastic deformation behaviour of Ti–24Nb–4Zr–7.9Sn for biomedical applications. Acta Biomater. 3, 277–286 (2007).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (51701150, 51831006, 52071257, 51901243) and the National 111 Project 2.0 (BP2018008).

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and X.R. conceived the idea. C.L. and Y.J. designed the project. C.L., J.T., M.H. and T.M. fabricated the samples. C.L., J.T. and P.L. performed experiments, and C.L. analysed the results with all the authors. D.W. helped analyse the mechanism of the Elinvar effect. C.L., Y.J. and X.R. wrote the manuscript with input from all the authors.

Corresponding authors

Correspondence to Yuanchao Ji or Xiaobing Ren.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ibrahim Karaman and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–9 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liu, C., Ji, Y., Tang, J. et al. A lightweight strain glass alloy showing nearly temperature-independent low modulus and high strength. Nat. Mater. 21, 1003–1007 (2022). https://doi.org/10.1038/s41563-022-01298-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01298-y

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing