Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes

Abstract

Rechargeable batteries paired with sodium metal anodes are considered to be one of the most promising high-energy and low-cost energy-storage systems. However, the use of highly reactive sodium metal and the formation of sodium dendrites during battery operation have caused safety concerns, especially when highly flammable liquid electrolytes are used. Here we design and develop solvent-free solid polymer electrolytes (SPEs) based on a perfluoropolyether-terminated polyethylene oxide (PEO)-based block copolymer for safe and stable all-solid-state sodium metal batteries. Compared with traditional PEO SPEs, our results suggest that block copolymer design allows for the formation of self-assembled nanostructures leading to high storage modulus at elevated temperatures with the PEO domains providing transport channels even at high salt concentration (ethylene oxide/sodium = 8/2). Moreover, it is demonstrated that the incorporation of perfluoropolyether segments enhances the Na+ transference number of the electrolyte to 0.46 at 80 °C and enables a stable solid electrolyte interface. The new SPE exhibits highly stable symmetric cell-cycling performance at high current density (0.5 mA cm−2 and 1.0 mAh cm−2, up to 1,000 h). Finally, the assembled all-solid-state sodium metal batteries demonstrate outstanding capacity retention, long-term charge/discharge stability (Coulombic efficiency, 99.91%; >900 cycles with Na3V2(PO4)3 cathode) and good capability with high loading NaFePO4 cathode (>1 mAh cm−2).

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical structures and physical properties of the polymer electrolytes.
Fig. 2: Morphology and electrochemical properties of the polymer electrolytes.
Fig. 3: Molecular-level interactions between polymer electrolytes and NaFSI.
Fig. 4: Na/Na plating/stripping performance.
Fig. 5: Morphologies of sodium metal deposition.
Fig. 6: All-solid-state Na/NVP cell performance.

Similar content being viewed by others

Data availability

All the data supporting the findings of this work are in the paper and Supplementary Information. Additional data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Zhao, Q. et al. Sodium-ion storage mechanism in triquinoxalinylene and a strategy for improving electrode stability. Energy Fuels 34, 5099–5105 (2020).

    Article  CAS  Google Scholar 

  2. Palomares, V. et al. Na-ion batteries, recent advances and present challenges to become low cost energy storage systems. Energy Environ. Sci. 5, 5884–5901 (2012).

    Article  CAS  Google Scholar 

  3. Cheng, X.-B., Zhang, R., Zhao, C.-Z. & Zhang, Q. Toward safe lithium metal anode in rechargeable batteries: a review. Chem. Rev. 117, 10403–10473 (2017).

    Article  CAS  Google Scholar 

  4. Zhao, Y., Adair, K. R. & Sun, X. Recent developments and insights into the understanding of Na metal anodes for Na-metal batteries. Energy Environ. Sci. 11, 2673–2695 (2018).

    Article  CAS  Google Scholar 

  5. Zhao, Q. et al. Tailored polyimide–graphene nanocomposite as negative electrode and reduced graphene oxide as positive electrode for flexible hybrid sodium-ion capacitors. ACS Appl. Mater. Interfaces. 10, 43730–43739 (2018).

    Article  CAS  Google Scholar 

  6. Ellis, B. L. & Nazar, L. F. Sodium and sodium-ion energy storage batteries. Curr. Opin. Solid State Mater. Sci. 16, 168–177 (2012).

    Article  CAS  Google Scholar 

  7. Forsyth, M., Porcarelli, L., Wang, X., Goujon, N. & Mecerreyes, D. Innovative electrolytes based on ionic liquids and polymers for next-generation solid-state batteries. Acc. Chem. Res. 52, 686–694 (2019).

    Article  CAS  Google Scholar 

  8. Wang, X. et al. Toward high-energy-density lithium metal batteries: opportunities and challenges for solid organic electrolytes. Adv. Mater. 32, 1905219 (2020).

    Article  CAS  Google Scholar 

  9. Mindemark, J., Lacey, M. J., Bowden, T. & Brandell, D. Beyond PEO—alternative host materials for Li+-conducting solid polymer electrolytes. Prog. Polym. Sci. 81, 114–143 (2018).

    Article  CAS  Google Scholar 

  10. Rollo-Walker, G., Malic, N., Wang, X., Chiefari, J. & Forsyth, M. Development and progression of polymer electrolytes for batteries: influence of structure and chemistry. Polymers 13, 4127 (2021).

    Article  CAS  Google Scholar 

  11. Liu, L. et al. In situ formation of a stable interface in solid-state batteries. ACS Energy Lett. 4, 1650–1657 (2019).

    Article  CAS  Google Scholar 

  12. Yu, Z. et al. Molecular design for electrolyte solvents enabling energy-dense and long-cycling lithium metal batteries. Nat. Energy 5, 526–533 (2020).

    Article  CAS  Google Scholar 

  13. Fan, X. et al. All-temperature batteries enabled by fluorinated electrolytes with non-polar solvents. Nat. Energy 4, 882–890 (2019).

    Article  CAS  Google Scholar 

  14. Amanchukwu, C. V. et al. A new class of ionically conducting fluorinated ether electrolytes with high electrochemical stability. J. Am. Chem. Soc. 142, 7393–7403 (2020).

    Article  CAS  Google Scholar 

  15. Suo, L. et al. Fluorine-donating electrolytes enable highly reversible 5-V-class Li metal batteries. Proc. Natl Acad. Sci. USA 115, 1156 (2018).

    Article  CAS  Google Scholar 

  16. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  CAS  Google Scholar 

  17. Olson, K. R. et al. Liquid perfluoropolyether electrolytes with enhanced ionic conductivity for lithium battery applications. Polymer 100, 126–133 (2016).

    Article  CAS  Google Scholar 

  18. Qiao, L., Judez, X., Rojo, T., Armand, M. & Zhang, H. Review—polymer electrolytes for sodium batteries. J. Electrochem. Soc. 167, 070534 (2020).

    Article  CAS  Google Scholar 

  19. Zhang, C. et al. Tuning of the aggregation behavior of fluorinated polymeric nanoparticles for improved therapeutic efficacy. ACS Nano 14, 7425–7434 (2020).

    Article  CAS  Google Scholar 

  20. Zhang, C. et al. Integrating fluorinated polymer and manganese-layered double hydroxide nanoparticles as pH-activated 19F MRI agents for specific and sensitive detection of breast cancer. Small 15, 1902309 (2019).

    Article  Google Scholar 

  21. Tan, X. et al. Amphiphilic perfluoropolyether copolymers for the effective removal of polyfluoroalkyl substances from aqueous environments. Macromolecules 54, 3447–3457 (2021).

    Article  CAS  Google Scholar 

  22. Zhang, C. et al. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 122, 167–208 (2022).

    Article  CAS  Google Scholar 

  23. Zhang, C. et al. PFPE-based polymeric 19F MRI agents: a new class of contrast agents with outstanding sensitivity. Macromolecules 50, 5953–5963 (2017).

    Article  CAS  Google Scholar 

  24. Li, T., Zhang, X.-Q., Shi, P. & Zhang, Q. Fluorinated solid-electrolyte interphase in high-voltage lithium metal batteries. Joule 3, 2647–2661 (2019).

    Article  CAS  Google Scholar 

  25. Wang, X. et al. Poly(ionic liquid)s-in-salt electrolytes with co-coordination-assisted lithium-ion transport for safe batteries. Joule 3, 2687–2702 (2019).

    Article  CAS  Google Scholar 

  26. Girard, G. M. A. et al. Sustainable, dendrite free lithium-metal electrode cycling achieved with polymer composite electrolytes based on a poly(ionic liquid) host. Batter. Supercaps 2, 229–239 (2019).

    Article  CAS  Google Scholar 

  27. Wang, X. et al. Preparation and characterization of gel polymer electrolytes using poly(ionic liquids) and high lithium salt concentration ionic liquids. J. Mater. Chem. A 5, 23844–23852 (2017).

    Article  CAS  Google Scholar 

  28. Stolwijk, N. A. et al. Salt-concentration dependence of the glass transition temperature in PEO–NaI and PEO–LiTFSI polymer electrolytes. Macromolecules 46, 8580–8588 (2013).

    Article  CAS  Google Scholar 

  29. Kinsey, T., Glynn, K., Cosby, T., Iacob, C. & Sangoro, J. Ion dynamics of monomeric ionic liquids polymerized in situ within silica nanopores. ACS Appl. Mater. Interfaces 12, 44325–44334 (2020).

    Article  CAS  Google Scholar 

  30. Kipnusu, W. K., Elmahdy, M. M., Elsayed, M., Krause-Rehberg, R. & Kremer, F. Counterbalance between surface and confinement effects as studied for amino-terminated poly(propylene glycol) constraint in silica nanopores. Macromolecules 52, 1864–1873 (2019).

    Article  CAS  Google Scholar 

  31. Yu, Z. et al. A dynamic, electrolyte-blocking, and single-ion-conductive network for stable lithium-metal anodes. Joule 3, 2761–2776 (2019).

    Article  CAS  Google Scholar 

  32. Zhang, C. et al. Emergence of hexagonally close-packed spheres in linear block copolymer melts. J. Am. Chem. Soc. 143, 14106–14114 (2021).

    Article  CAS  Google Scholar 

  33. Barbon, S. M. et al. Architecture effects in complex spherical assemblies of (AB)n-type block copolymers. ACS Macro Lett. 9, 1745–1752 (2020).

    Article  CAS  Google Scholar 

  34. Bates, M. W. et al. Synthesis and self-assembly of ABn miktoarm star polymers. ACS Macro Lett. 9, 396–403 (2020).

    Article  CAS  Google Scholar 

  35. Zhang, C. et al. Rapid generation of block copolymer libraries using automated chromatographic separation. J. Am. Chem. Soc. 142, 9843–9849 (2020).

    CAS  Google Scholar 

  36. Min, J., Barpuzary, D., Ham, H., Kang, G. C. & Park, M. J. Charged block copolymers: from fundamentals to electromechanical applications. Acc. Chem. Res. 54, 4024–4035 (2021).

    Article  CAS  Google Scholar 

  37. Wong, D. H. C. et al. Nonflammable perfluoropolyether-based electrolytes for lithium batteries. Proc. Natl Acad. Sci. USA 111, 3327–3331 (2014).

    Article  CAS  Google Scholar 

  38. Tian, Y. et al. Reactivity-guided interface design in Na metal solid-state batteries. Joule 3, 1037–1050 (2019).

    Article  CAS  Google Scholar 

  39. Cong, L. et al. Role of perfluoropolyether-based electrolytes in lithium metal batteries: implication for suppressed Al current collector corrosion and the stability of Li metal/electrolytes interfaces. J. Power Sources 380, 115–125 (2018).

    Article  CAS  Google Scholar 

  40. Zheng, Q., Ma, L., Khurana, R., Archer, L. A. & Coates, G. W. Structure–property study of cross-linked hydrocarbon/poly(ethylene oxide) electrolytes with superior conductivity and dendrite resistance. Chem. Sci. 7, 6832–6838 (2016).

    Article  CAS  Google Scholar 

  41. Arkhipova, E. A., Ivanov, A. S., Maslakov, K. I., Savilov, S. V. & Lunin, V. V. Effect of cation structure of tetraalkylammonium- and imidazolium-based ionic liquids on their conductivity. Electrochim. Acta 297, 842–849 (2019).

    Article  CAS  Google Scholar 

  42. Pathirana, T., Kerr, R., Forsyth, M. & Howlett, P. C. Electrochemical formation in super-concentrated phosphonium based ionic liquid electrolyte using symmetric Li-metal coin cells. J. Electrochem. Soc. 167, 120526 (2020).

    Article  CAS  Google Scholar 

  43. Xiang, Y. et al. Visualizing the growth process of sodium microstructures in sodium batteries by in-situ 23Na MRI and NMR spectroscopy. Nat. Nanotechnol. 15, 883–890 (2020).

    Article  CAS  Google Scholar 

  44. Chen, J. et al. Electrolyte design for LiF-rich solid–electrolyte interfaces to enable high-performance microsized alloy anodes for batteries. Nat. Energy 5, 386–397 (2020).

    Article  CAS  Google Scholar 

  45. Wang, Q. et al. Stabilizing a sodium-metal battery with the synergy effects of a sodiophilic matrix and fluorine-rich interface. J. Mater. Chem. A 7, 24857–24867 (2019).

    Article  CAS  Google Scholar 

  46. Xu, M. et al. NaF-rich solid electrolyte interphase for dendrite-free sodium metal batteries. Energy Storage Mater. 44, 477–486 (2022).

    Article  Google Scholar 

  47. Xiao, Y., Hwang, J.-Y., Belharouak, I. & Sun, Y.-K. Na storage capability investigation of a carbon nanotube-encapsulated Fe1–xS composite. ACS Energy Lett. 2, 364–372 (2017).

    Article  CAS  Google Scholar 

  48. Zhang, J.-N. et al. Dynamic evolution of cathode electrolyte interphase (CEI) on high voltage LiCoO2 cathode and its interaction with Li anode. Energy Storage Mater. 14, 1–7 (2018).

    Article  Google Scholar 

  49. Wang, X. et al. Poly(ionic liquid)s/electrospun nanofiber composite polymer electrolytes for high energy density and safe Li metal batteries. ACS Appl. Energy Mater. 2, 6237–6245 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors acknowledge the support of the Australia–India Strategic Research Fund (AISRF 48515) and the Australian Research Council for funding through the Industry Transformation Training Centre Scheme (IC180100049). The research reported here was partially supported by the National Science Foundation (NSF) through the Materials Research Science and Engineering Center at UC Santa Barbara, DMR-1720256 (IRG-2). A.K.W. and C.Z. acknowledge support from the Australian Research Council (CE140100036) and National Health and Medical Research Council for an Early Career Fellowship (APP1157440 to C.Z.). The authors acknowledge the use of the facilities and the assistance of Y. Hora at the Monash X-ray platform. The Australian National Fabrication Facility, Queensland Node, is also acknowledged for access to some items of equipment.

Author information

Authors and Affiliations

Authors

Contributions

X.W., C.Z. and M.F. conceived the idea. C.Z. designed and characterized the PFPE block polymers. C.F., Y.W. and X.T. prepared the block copolymers. X.W. led the electrolyte design, electrolyte characterization and battery experiments. T.C.M. synthesized the NFP active materials and prepared the cathodes. J.S. conducted XPS and interpreted results with C.Z. and X.W. M.S., Q.Y., F.C., D.J.S. and P.K. performed simulations and interpreted results. X.W. and C.Z. prepared the draft manuscript. P.C.H., C.J.H., A.K.W. and M.F. contributed to data interpretation and manuscript editing.

Corresponding authors

Correspondence to Xiaoen Wang, Cheng Zhang, Andrew K. Whittaker or Maria Forsyth.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Shinichi Komaba and Ying Shirley Meng for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary materials, preparation and characterization, and Supplementary Figs. 1–30 and Tables 1–4.

Source data

Source Data Fig. 1

Statistical Source Data for Fig1

Source Data Fig. 2

Statistical Source Data for Fig2

Source Data Fig. 4

Statistical Source Data for Fig4

Source Data Fig. 4

Statistical Source Data for Fig4

Source Data Fig. 6

Statistical Source Data for Fig6

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, X., Zhang, C., Sawczyk, M. et al. Ultra-stable all-solid-state sodium metal batteries enabled by perfluoropolyether-based electrolytes. Nat. Mater. 21, 1057–1065 (2022). https://doi.org/10.1038/s41563-022-01296-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01296-0

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing