Abstract
Complex correlated states emerging from manybody interactions between quasiparticles (electrons, excitons and phonons) are at the core of condensed matter physics and material science. In lowdimensional materials, quantum confinement affects the electronic, and subsequently, optical properties for these correlated states. Here, by combining photoluminescence, optical reflection measurements and ab initio theoretical calculations, we demonstrate an unconventional excitonic state and its bound phonon sideband in layered silicon diphosphide (SiP_{2}), where the bound electron–hole pair is composed of electrons confined within onedimensional phosphorus–phosphorus chains and holes extended in twodimensional SiP_{2} layers. The excitonic state and emergent phonon sideband show linear dichroism and large energy redshifts with increasing temperature. Our ab initio manybody calculations confirm that the observed phonon sideband results from the correlated interaction between excitons and optical phonons. With these results, we propose layered SiP_{2} as a platform for the study of excitonic physics and manyparticle effects.
Similar content being viewed by others
Main
An exciton, the electron–hole pair formed via Coulomb interaction, is an ideal platform for understanding manybody effects^{1,2,3,4,5,6,7,8}. The properties of excitons strongly depend on the crystal structure and dimensionality of host materials^{9,10}. Due to quantum confinement, the electronic properties of quasiparticles (electrons, holes and excitons) in lowdimensional materials can be remarkably different from those in threedimensional (3D) bulk materials. The Coulomb screening in lowdimensional quantumconfined structures, particularly in onedimensional (1D) electronic systems, is known to be weaker than that in bulk systems and consequently leads to larger exciton binding energy^{11,12,13,14} and other emergent excitonic phenomena^{10}. Experimental observations of anisotropic excitons have been demonstrated in twodimensional (2D) van der Waals (vdWs) materials in which electrons and holes taking part in the formation of 2D excitons are confined in the same monolayer^{15,16,17,18,19}. Meanwhile, in 1D materials such as carbon nanotubes (CNTs)^{12,20}, 1D excitonic states have also been observed in which constituent electrons and holes are known to be confined within 1D nanostructures. A unique excitonic state with hybrid dimensionality, which is yet elusive, such as a bound electron–hole pair with an electron confined along one dimension (1Dconfined electron) and a hole confined along two dimensions (2Dconfined hole), or vice versa, would be of great interest and highly desired in terms of its optical properties and interactions with other emergent quasiparticles.
In this work, we demonstrate the observation of an unconventional bright exciton in a layered silicon diphosphide (SiP_{2}) crystal, accompanied by a correlated phonon sideband in the optical spectrum. Based on our ab initio manybody GW and GW plus Bethe–Salpeter equation (GW–BSE) calculations, as well as nonperturbative model calculations, we find that the electrons constituting the excitons are confined within the 1D phosphorus–phosphorus chains of SiP_{2,} while the correlated holes extend over the 2D SiP_{2} atomic plane. Therefore, excitonic states in layered SiP_{2} are expected to exhibit hybrid dimensionality properties. Photoluminescence (PL) spectroscopy and reflectance contrast (RC) spectroscopy show that, regardless of the polarization of the excitation laser, the optical response of the excitonic state is always linearly polarized along the x direction of the SiP_{2} lattice and is accompanied by a unique sideband feature. Both the excitonic emission and the sideband feature undergo dramatic redshifts as the temperature increases, in contrast to a slight temperaturedependent redshift of the band edge that is mainly influenced by electron–phonon coupling^{21,22}. This reveals that in SiP_{2} the interaction of the electronic degrees of freedom with the phononic degrees of freedom is strongly enhanced by excitonic effects. The phonon sideband feature can be theoretically modelled using a nonperturbative approach to describe the interaction between the unconventional excitons and optical phonon modes. Note that reduced dimensionality normally leads to excitonic features that are strongly affected by extrinsic environmental effects, such as disorder from the substrate and surface additives^{10}. Here we provide an investigation on the intrinsic excitonic behaviour in thicker, bulklike SiP_{2} flakes. Such a tightly bound unconventional exciton in SiP_{2} not only can be envisioned as a platform for the exploration of exciton–phonon (ex–ph) coupling^{23,24,25,26,27,28} and other manybody physics but also may lend itself to potential applications for anisotropic optoelectronic devices.
Crystal structure and electronic property of SiP_{2}
Layered SiP_{2} is chosen as our target material because of its following unique characteristics. Compared with hexagonal layered materials such as graphene and MoS_{2}, the cleavable SiP_{2} crystal (space group Pnma) possesses an orthorhombic layered structure with a huge inplane lattice anisotropy, as schematically shown in Fig. 1a and experimentally confirmed by scanning transmission electron microscopy–annular darkfield (STEM–ADF) imaging in Fig. 1b–d and Supplementary Figs. 1 and 2. Remarkably, based on their atomic surroundings, two types of inequivalent phosphorus atoms P_{A} and P_{B} can be distinguished in the SiP_{2} lattice. As shown in Fig. 1a, P_{A} binds to three silicon atoms, while P_{B} binds to one silicon atom and the other two equivalent P_{B} atoms. Note that the P_{B} atoms along the y direction of the crystal lattice can naturally form phosphorus–phosphorus chains (denoted as P_{B}–P_{B} chains) embedded in the bulk SiP_{2} (blue shades in Fig. 1a), which play a critical role in realizing the quasi1D electronic states involved in exciton formation. To identify the variation in the chemical bonding environment around P_{A} and P_{B} atoms and the resulting unique properties of P_{B}–P_{B} chains in layered SiP_{2}, we performed arsenic doping experiments (Supplementary Information, section 2.4) and used STEM characterization (Supplementary Fig. 5). One can see that the doped arsenic atoms only selectively substitute the P_{B} atoms inside the P_{B}–P_{B} chains (more details in Supplementary Fig. 5), indicating that the atomic structure containing P_{B}–P_{B} chains in SiP_{2} is distinct from the buckled structure in black phosphorus.
More importantly, the anisotropy induced by quasi1D P_{B}–P_{B} chains in layered SiP_{2} directly results in unique electronic properties. Figure 1e shows the band structure of semiconducting bulk SiP_{2} obtained from GW calculations. We found that the conduction band edge states in the X–Γ–Z plane of the first Brillouin zone (BZ) are relatively flat with a large effective mass (Supplementary Table 1), and the corresponding charge densities are localized on the P_{B}–P_{B} chains (Fig. 1f), behaving like 1Dconfined electrons. Importantly, in the direction along the P_{B}–P_{B} chains (the y direction of the crystal lattice), the electron hopping on P_{B} atoms is significantly larger (bandwidth, ∼1.63 eV) than that across the P_{B}–P_{B} chains (bandwidth, ∼0.08 eV) (see details in Supplementary Fig. 22), confirming the 1D nature of this electronic state on the conduction band edge. On the other hand, the hole states at the valence band edge do not show the same level of anisotropy (Supplementary Information, section 2.2), which, compared with 1D electrons, are relatively extended over the whole atomic plane in a quasi2D fashion. The hybrid dimensionality of these band edge states in SiP_{2} is remarkably different from those of the anisotropic 2D states in black phosphorus^{15,29,30}. By analysing the calculated phonon bands given in Supplementary Information, section 13, we identify that the optical phonons localized on P_{B} atoms and neighbouring silicon atoms could have a large coupling with quasi1D electronic states in layered SiP_{2}.
Exciton with 1Dconfined electron and 2Dconfined hole
Figure 2a,b presents the PL spectrum and the second derivative of the RC (dRC; see Supplementary Information, section 6) of an SiP_{2} flake (228 nm) at 5.5 K, which reflects the light emission and absorption properties, respectively. The PL spectrum shows a main peak A at 2.06 eV (the lowest bright excitonic bound state denoted as the A exciton) and a broadened sideband feature Aʹ at 2.01 eV. The main peak A, obtained from all SiP_{2} flakes measured at 5.5 K, is consistently located at an emission energy of 2.06 ± 0.01 eV (here, 0.01 eV is the energy uncertainty obtained from the standard deviation of the emission energies of several measured SiP_{2} flakes; see Supplementary Information, section 7). Such a peak A in the PL spectrum matches the peak at 2.05 eV in the dRC spectrum, as indicated by the red arrow (Fig. 2b). Due to the interference of the RC signals from the different interfaces in the SiP_{2} thin films supported by substrates (Supplementary Information, section 6), the phonon sideband feature is difficult to identify from the dRC spectrum.
Figure 2c shows the absorbance spectra obtained from the GW–BSE calculation and GW calculation with the random phase approximation (GW–RPA). Compared with the calculated absorption spectra based on GW–BSE and GW–RPA, we confirm that the emission peak A at 2.12 eV originates from the recombination of an excitonic state, in which the electronic states for electrons are quasi1D and related electronic states for holes are quasi2D (Fig. 1f). As shown in Fig. 2c,d, the calculated binding energy of such an unconventional exciton is approximately 140 meV (for more details about GW–BSE calculations, see Methods and Supplementary Information, section 12). From the modulus squared of the exciton wavefunction in real space shown in Fig. 3c, the observed exciton behaves like a Wanniertype exciton with twofold rotational symmetry, in sharp contrast to 2D excitons in monolayer transitionmetal dichalcogenides^{13}. More importantly, this exciton is embedded in a bulk layered material with an unusual atomic structure in contrast to those of reported pure 1D excitons in semiconductor nanowires^{31} and CNTs^{11,12}, leading to strongly anisotropic Coulomb screening for 1Dconfined electrons and 2Dconfined holes.
Anisotropic exciton and exciton–phonon coupling
Since the unconventional A exciton is mainly contributed by electrons and holes localized along the X–Γ–Z direction in the first BZ (Supplementary Information, section 12.2), we use the band edge states at the X point as the representative kpoint to explore the influence of electron–phonon interactions on its electronic structures and optical response. Figure 2f shows the zeropoint energy shifts of the band gap at the X point induced by all optical phonon modes with momentum q = 0 at zero temperature. Here, we use the frozenphonon approximation^{32} to estimate the influence of optical phonon vibrations on the electronic states at the X point (see Supplementary Information, section 13.2 for more details). Since the electron wavefunctions of the A exciton are localized on the P_{B}–P_{B} chains, this unconventional exciton couples most strongly to optical phonons, whose vibrational modes are in the X–Γ–Z plane and involve P_{B} atoms and neighbouring silicon atoms (Fig. 2g). These optical phonon modes dramatically modify the electronic structures of the quasi1D states (Supplementary Information, section 13.4), indicating significant electron–phonon coupling within the P_{B}–P_{B} chains. Comparing the results in Fig. 2f,g, one can see that the prominent energy shifts are from the optical phonon modes with eigenenergies of ∼50–60 meV. More details are given in Supplementary Information, sections 13.2 and 13.4.
The experimental observation of the sideband feature Aʹ also indicates that ex–ph interaction on the quasi1D P_{B}–P_{B} chains is at least moderately strong (Supplementary Information, section 8). Therefore, we use a nonperturbative model to simulate the emergence of the sideband feature Aʹ, where a ‘generalized Holstein Hamiltonian’ is used with inputs from firstprinciples calculations, and the selfenergy effects are included beyond the firstorder Fan–Migdal diagram (Methods). In this model, we found that the fitted ex–ph coupling constant M of 30 meV is comparable to the relatively small bandwidth (or hopping, t_{ex} = −20 meV) of the unconventional A exciton (for the estimate of t_{ex}, see Methods and Supplementary Information, section 13.3). Our approach is similar to the cumulant method considering the ex–ph coupling within the perturbative limit and makes use of the exponential assumption to include the selfenergy effects from higherorder diagrammatic terms^{33,34,35}. As shown in Fig. 2e, the appearance of the phonon sideband peak in the simulated spectrum agrees with the experimental results, indicating that sideband Aʹ originates from the ex–ph coupling between the unconventional exciton and the abovementioned optical phonon modes.
Figure 3a,b shows the contour plots of the PL and dRC intensity of bulk SiP_{2} as a function of emission energy at different detection polarization angles θ (θ = 0° is set along the x direction), suggesting that the linear dichroic absorption and PL emission have similar twofold symmetry characteristics (see Supplementary Information, sections 4 and 12 for more details). Note that the observed linearly polarized PL emission remains along the x direction regardless of the incident laser polarization direction or the sample temperature, as shown in Supplementary Figs. 10 and 11. Our GW–BSE calculations (Fig. 3d and Supplementary Fig. 21b) show that the absorption peak of the quasi1D A exciton appears only when the polarization is along the x direction. The absorption signal inside the band gap along the y direction is forbidden by the SiP_{2} crystal symmetry, which results in relevant optical excitonic matrix elements being zero (Supplementary Information, section 12.3). We also performed pumpprobe transient optical measurements to characterize the dynamics of the observed bright exciton in bulk SiP_{2} (see Supplementary Information, section 9 for more details). The lifetime for the exciton in SiP_{2} is as short as 250 fs, which is probably related to an ultrafast process that dissociates these linearly polarized bound excitonic states into unbound and unpolarized states.
We further compare the energy shift of the A exciton peak with the energy shift of the quasiparticle band edge as the temperature changes. Figure 4a,b shows the temperaturedependent PL and dRC spectra for bulk SiP_{2}. As shown in Fig. 4c, the optical absorption of the band edges and the exciton peak A, and the sideband feature Aʹ, all exhibit clear redshifts with increasing temperature. The redshifts of the band edge can be fitted with the Bose–Einstein model (see Supplementary Information, section 7 for more details), suggesting that the interaction between electrons and phonons plays an important role in the energy shifts. The redshift of the band edge absorption resulting from the electron–phonon coupling^{21,22,36} is approximately 20 meV at 300 K. On the other hand, the redshift of both peaks A and Aʹ is approximately 90 meV at 300 K, much larger than the energy shift of the direct band edge, indicating an additional contribution from the large coupling between the bound exciton and optical phonons. Such a result is consistent with the analysis of temperaturedependent linewidth broadening of the peak for unconventional A exciton (see Supplementary Information, section 5 for more details).
Outlook
Using optical spectroscopic measurements with the support of ab initio manybody calculations, we demonstrated the observation of an unconventional bright exciton in layered SiP_{2}. In contrast to those reported 1D and 2D excitons truly confined in CNTs and monolayer transitionmetal dichalcogenides, the bound excitonic states in layered SiP_{2} exhibit hybrid low dimensionality due to the intrinsic 1D and 2D nature of the constituent electrons and holes, respectively. Interestingly, we envision that SiP_{2} can host peculiar trion states, including a negatively charged trion (composed of two 1Dconfined electrons and one 2Dconfined hole) and a positively charged trion (composed of one 1Dconfined electron and two 2Dconfined holes). Once we couple layered SiP_{2} to other vdWs semiconductors, such as monolayer MoS_{2}, to form heterostructures, the interfacial layer coupling can change the rotational symmetry of the semiconducting layers and could bring optical and optoelectronic functionalities via symmetry engineering at the heterointerfaces. Through the doping modulation of carrier polarity in SiP_{2} or its heterostructures, rich excitonic physics with exotic dynamic behaviour can be realized in this material platform, such as interlayer excitons and Moiré excitons with tunable dimensionality. Furthermore, the interaction between this unconventional bound exciton and the optical phonon leads to an accompanying phonon sideband. Since a phonon and an exciton fall within the same energy range from zero to several hundred meV, we speculate that such manybody interactions may even lead to the emergence of elementary excitations beyond the Born–Oppenheimer limit in atomic 2D thin films or nanostructures of SiP_{2}. Our work will provide a platform to further understand ex–ph coupling and other essential manybody physics and inspire followup studies and calculation method developments therein.
Methods
SiP_{2} crystal growth with flux method
Singlecrystalline samples were synthesized by using the tin flux method^{37}. Silicon, phosphorus, gadolinium and tin were mixed at a Si:P:Gd:Sn ratio of 1:6:0.03:5 and sealed into evacuated quartz tubes. The mixture was slowly heated to 1,100 °C to avoid bumping phosphorous and kept for 48 h. Subsequently, the sample was cooled to 400 °C in 140 h and then cooled to room temperature by switching off the electric furnace. The tin flux was removed by using diluted HCl (aq). The obtained black crystals were then ultrasonicated in distilled water and ethanol to remove the residuals (such as phosphorous, adhered) on the crystal surface. This procedure was repeated until the water (or ethanol) became transparent enough after ultrasonication.
Sample preparation for optical measurements and STEM–ADF measurements
SiP_{2} flakes with thicknesses of 5–200 nm were prepared by mechanical exfoliation onto SiO_{2}/Si wafers (300nmthick SiO_{2} layer) or fused silica substrate. The thickness was identified by atomic force microscopy (integrated with a WITec Alpha 300 Raman system) after all optical measurements were finished. SiP_{2} is stable in a nitrogen atmosphere and in vacuum and can gradually degrade when exposed to air within several hours. To avoid sample degradation, the whole sample preparation was processed in a glovebox. Atomicresolution STEM–ADF imaging was performed on an aberrationcorrected ARM200F equipped with a cold fieldemission gun operating at 80 kV. The STEM–ADF images were collected using a halfangle range from ∼81 to 280 mrad. The convergence semiangle of the probe was ∼30 mrad.
Optical measurements
Optical measurements, including the PL spectra and RC and Raman spectra, were performed using a confocal Raman system (WITec Alpha 300). Thicknessdependent PL measurements (Supplementary Information, section 3) were carried out at room temperature using a ×100 objective lens with an incident laser (laser power, 0.2 mW) focused to an ∼1 μm spot. Nitrogen conditions were accomplished by protecting samples using continuous nitrogen gas flow. Lowtemperature PL and Raman measurements were performed under vacuum conditions with samples installed in a cryostat (Cryo Instrument of America RC102–CFM microscopy cryostat) using a long working distance ×50 objective lens (laser power, 3 mW). For RC measurement, we recorded the subtracted reflectance of the sample normalized by the reflectance of the substrate, that is, \({{{\mathrm{RC}}}} = {{{\mathrm{1}}}}  \frac{{R_{{{{\mathrm{sample}}}}}}}{{R_{{{{\mathrm{sub}}}}}}}\), where R_{sample} represents the reflectance of the SiP_{2} sample on the silicon dioxide or quartz substrate and R_{sub} represents the reflectance of the bare substrate.
Firstprinciples calculations
Firstprinciples density functional theory (DFT) calculations were performed by using the projectoraugmented wave (PAW)^{38,39} method implemented in the Vienna Ab initio Simulation Package (VASP)^{40}. The energy cutoff for the plane wave basis is set to 500 eV. To test the lattice constants to compare with the experimental value, we used the exchangecorrelation functionals of generalized gradient approximation (GGA) with Perdew–Burke–Ernzerhof (PBE) type, local density approximation (LDA), and the PBE functional with vdWs corrections to fully relax the lattice structures. The vdWs interactions were included by using the methods proposed by Dion et al.^{41} with the optB88vdW functional. We found that lattice constants obtained from the method including the vdWs corrections are closest to the experimental values (Supplementary Information, sections 10 and 11), which are used in the following phonon bands, GW and GW–BSE calculations. During the lattice relaxations, the force convergence criterion was 10^{–3} eV Å^{−1}, and a 9 × 21 × 7 kpoint mesh was sampled over the BZ. For the selfconsistent electronic structure calculations, we set the energy convergence criterion to 10^{–6} eV and the kpoint mesh to 11 × 25 × 9 over the whole BZ. The phonon spectrum was calculated by the PHONOPY package^{42} in the framework of density functional perturbation theory with the finitedisplacement approach, in which a 2 × 4 × 1 supercell was employed.
Using VASP^{43}, GW calculations^{44} were performed using Kohn–Sham DFT wavefunctions (GGA–PBE) calculated on a 4 × 16 × 4 kpoint mesh as the initial mean field. The dielectric response function used for the fully frequencydependent eigenvalueselfconsistent GW calculation is summed over 1,240 Kohn–Sham states (corresponding to a 100 eV cutoff). The frequency grid is divided into a dense part ranging from 0 to 13.75 eV and a coarse grid tail ranging from 13.75 to 178.78 eV. The grid sampling is nonuniform with 80 frequency grid points, resulting in step sizes ranging from 0.31 eV in the dense grid up to 46.35 eV in the tail^{45}. We use multiple iterations in the GW calculation to update the eigenvalues of the Kohn–Sham states when calculating both Green’s function G and the screened interaction W while keeping the initial Kohn–Sham wavefunctions unchanged. Full convergence was reached after five iterations. This procedure results in better agreement with the experimental results because the standard G_{0}W_{0} approach underestimates the band gap by approximately 220 meV. The maximally localized Wannier functions obtained from the Wannier90 packages^{46,47} were used to plot the GW quasiparticle band structure (Fig. 1e). In the construction of the Wannier functions, the s and p orbitals of both the silicon and phosphorus atoms were used as initial trial wavefunctions. The GW quasiparticle energies and Kohn–Sham wavefunctions are used to construct the kernel of the BSE^{48,49}. We employed the standard Tamm–Dancoff approximation and included ten conduction bands and ten valence bands during the calculation of the GW–BSE Hamiltonian.
Calculation of the spectral function of the phonon sidebands
To model the spectral function of the phonon sidebands, we solved for the dressed polaron Green’s function of the generalized Holstein Hamiltonian^{50,51}, H = H_{0} + V, where \(H_0 = \mathop {\sum }\limits_{{{\mathbf{q}}}} \omega _{{{\mathbf{q}}}}b_{{{\mathbf{q}}}}^{\dagger} b_{{{\mathbf{q}}}} + \mathop {\sum }\limits_{{{\mathbf{k}}}} {\it{\epsilon }}_{{{\mathbf{k}}}}c_{{{\mathbf{k}}}}^{\dagger} c_{{{\mathbf{k}}}}\) is the unperturbed singleparticle Hamiltonian and \(V = \mathop {\sum }\limits_{{{{\mathbf{k}}}},{{{\mathbf{q}}}}} M_{{{{\mathbf{k}}}},{{{\mathbf{q}}}}}c_{{{{\mathbf{k}}}} + {{{\mathbf{q}}}}}^{\dagger} c_{{{\mathbf{k}}}}(b_{{{\mathbf{q}}}} + b_{  {{{\mathbf{q}}}}}^{\dagger} )\) is the interaction Hamiltonian. For the first term constituting H_{0}, q is the crystal momentum of the phonon, \(b_{{{\mathbf{q}}}}^{\dagger}\) and b_{q} are the phonon creation and annihilation operators, and ω_{q} (which shall be taken as a constant independent of q) is the average phonon energy of the dominant optical branch responsible for ex–ph coupling. For the second term constituting H_{0}, k is the centreofmass momentum of the exciton, \(c_{{{\mathbf{k}}}}^{\dagger}\) and c_{k} are the exciton creation and annihilation operators, and \(\in\)_{k} is its energy dispersion. We obtain these values from our GW calculations. The interaction Hamiltonian, V, represents the ex–ph interaction, with M_{k,q} being the ex–ph coupling matrix element. Since there is only one exciton in the model Hamiltonian, its solution is independent of the statistics of particle^{1}. The same solution would be obtained for any fermion or boson, such as electrons (which is more common), as long as the particles are free to move. To construct the generalized Holstein Hamiltonian, we first calculate most of its parameters from firstprinciples calculations and finally fit the ex–ph coupling matrix elements, M_{k,q} (also to be taken as a constant), to the experimental results.
First, we note that although more than one phonon mode contributes to the renormalization of the band gap, the dominant contributing phonon modes fall within the energy range of 50–60 meV (Fig. 2f and Supplementary Fig. 24). Since the phonon bands that project strongly onto the P_{B}–P_{B} chain are relatively flat within the X–Γ–Z plane in reciprocal space (Supplementary Fig. 23b), we assume the representative phonon band to have negligible phonon bandwidth, as in the Einstein model. Hence, we use the energy of a representative longitudinal optical (LO) phonon mode, ω_{q} ≡ ω_{LO} = 55 meV, to model the ex–ph interaction, as obtained from the ab initio phonon calculations. We also assumed that the exciton has a freeparticle dispersion of a periodic 1D chain, namely, \({\it{\epsilon }}_{{{\mathbf{k}}}} =  2t_{{{{\mathrm{ex}}}}}\,{{{\mathrm{cos}}}}(ka)\), where 4t_{ex} = −80 meV is the exciton bandwidth. The exciton hopping term, t_{ex}, was estimated using the hole bandwidth (4t_{h} ≈ −80 meV) and the electron bandwidth (4t_{h} ≈ 640 meV), which are calculated along the X–Γ–Z direction of the Brillouin zone from our GW calculations (Supplementary Fig. 22), with the formula \(t_{{{{\mathrm{ex}}}}}^{  1} = t_{{{\mathrm{h}}}}^{  1} + t_{{{\mathrm{e}}}}^{  1}\). Finally, using the above parameters obtained from the firstprinciples calculations, we only fit the ex–ph parameter, M_{k,q} ≡ M = 30 meV, so that the spectral function of the calculated dressed Green’s function reproduces the PL spectrum shown in the optical experiments (Fig. 2e).
In the calculation of the dressed interacting polaron Green’s function, G (k,ω), Dyson’s identity, \(\left[{G\left({{{{\mathbf{k}}}},\omega } \right)} \right]^{  1} = \left[ {G_0\left({{{{\mathbf{k}}}},\omega } \right)} \right]^{  1}  {{{\mathrm{{\Sigma}}}}}({{{\mathbf{k}}}},\omega )\) is used, where G_{0}(k,ω) is the freeparticle Green’s function, given by \(G_0\left({{{{\mathbf{k}}}},\omega } \right) = \left( {\omega  {\it{\epsilon }}_{{{\mathbf{k}}}} + i\eta } \right)^{  1}\) and Σ(k,ω) is the ex–ph selfenergy, which consists of an infinite sum of all proper selfenergy diagrams. Written more explicitly, G(k,ω) can be written as a continued fraction,
such that Σ(k,ω) is the second term in the denominator given by
that when expanded in powers of M^{2} reproduces the Feynman diagrams of each order^{52,53,54}. In the calculation of the selfenergy, we used the momentumaveraged noninteracting Green’s function, as introduced by Berciu^{53} and extended by Goodvin, Berciu and Sawatzky^{54}. In this approximation, the momentumdependent noninteracting Green’s function, G_{0}(k,ω), in the expression of the selfenergy, was replaced by its momentum average, \(\bar G_0\left(\omega \right)\), given by \(\bar G_0\left(\omega \right) = \frac{1}{{N_{{{\mathbf{k}}}}}}\mathop {\sum }\limits_{{{\mathbf{k}}}} G_0\left( {{{{\mathbf{k}}}},\omega } \right) = \mathop {\smallint }\limits_{  \infty }^\infty d{\it{\epsilon }}\rho _0\left( {\it{\epsilon }} \right)G_0({\it{\epsilon }},\omega ) = \frac{{{{{\mathrm{sgn}}}}\left( \omega \right)}}{{\sqrt {\left( {\omega + i\eta } \right)^2  4t_{xct}^2} }}\), where N_{k} is the number of kpoints and \(\rho _0({\it{\epsilon }})\) is the density of states. The momentumaveraged selfenergy, \({{{\mathrm{{\Sigma}}}}}_{{{{\mathrm{MA}}}}}\left(\omega \right)\), is now momentum independent, and the interacting Green’s function is now \({{{{G}}}}\left({{{{\mathbf{k}}}},\omega } \right) = \frac{1}{{G_0^{  1}\left( {{{{\mathbf{k}}}},\omega } \right)  {{{\mathrm{{\Sigma}}}}}_{{{{\mathrm{MA}}}}}\left( \omega \right)}}\). Finally, the spectral function was given by the imaginary part of the interacting Green’s function, the main peak of which is fitted to the excitation energy of excitonic state A as obtained from GW–BSE calculations.
Data availability
Source data are provided with this paper. The authors declare that data generated or analysed during this study are provided as source data or included in the Supplementary Information. Further data are available from the corresponding authors upon request. Source data are provided with this paper.
Change history
21 June 2022
A Correction to this paper has been published: https://doi.org/10.1038/s41563022013150
References
Mahan, G. D. ManyParticle Physics (Springer, 2013).
Singh, J. Excitation Energy Transfer Processes in Condensed Matter: Theory And Applications (Springer, 2013).
Su, J.J. & MacDonald, A. H. How to make a bilayer exciton condensate flow. Nat. Phys. 4, 799–802 (2008).
High, A. A. et al. Spontaneous coherence in a cold exciton gas. Nature 483, 584–588 (2012).
Mak, K. F. et al. Tightly bound trions in monolayer MoS_{2}. Nat. Mater. 12, 207–211 (2013).
You, Y. et al. Observation of biexcitons in monolayer WSe_{2}. Nat. Phys. 11, 477–481 (2015).
Wang, Z. et al. Evidence of hightemperature exciton condensation in twodimensional atomic double layers. Nature 574, 76–80 (2019).
Madéo, J. et al. Directly visualizing the momentumforbidden dark excitons and their dynamics in atomically thin semiconductors. Science 370, 1199 (2020).
Haug, H. & Koch, S. W. Quantum Theory of the Optical and Electronic Properties of Semiconductors (World Scientific, 2009).
Wang, G. et al. Colloquium: Excitons in atomically thin transition metal dichalcogenides. Rev. Mod. Phys. 90, 021001 (2018).
Spataru, C. D., IsmailBeigi, S., Benedict, L. X. & Louie, S. G. Excitonic effects and optical spectra of singlewalled carbon nanotubes. Phys. Rev. Lett. 92, 077402 (2004).
Wang, F., Dukovic, G., Brus, L. E. & Heinz, T. F. The optical resonances in carbon nanotubes arise from excitons. Science 308, 838–841 (2005).
Qiu, D. Y., da Jornada, F. H. & Louie, S. G. Optical spectrum of MoS_{2}: manybody effects and diversity of exciton states. Phys. Rev. Lett. 111, 216805 (2013).
Chernikov, A. et al. Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS_{2}. Phys. Rev. Lett. 113, 076802 (2014).
Wang, X. et al. Highly anisotropic and robust excitons in monolayer black phosphorus. Nat. Nanotechnol. 10, 517–521 (2015).
Aslan, O. B., Chenet, D. A., van der Zande, A. M., Hone, J. C. & Heinz, T. F. Linearly polarized excitons in single and fewlayer ReS_{2} crystals. ACS Photonics 3, 96–101 (2016).
Arora, A. et al. Highly anisotropic inplane excitons in atomically thin and bulklike 1T′ReSe_{2}. Nano Lett. 17, 3202–3207 (2017).
Kang, S. et al. Coherent manybody exciton in van der Waals antiferromagnet NiPS_{3}. Nature 583, 785–789 (2020).
Hwangbo, K. et al. Highly anisotropic excitons and multiple phonon bound states in a van der Waals antiferromagnetic insulator. Nat. Nanotechnol. 16, 655–660 (2021).
Lefebvre, J., Fraser, J. M., Finnie, P. & Homma, Y. Photoluminescence from an individual singlewalled carbon nanotube. Phys. Rev. B 69, 075403 (2004).
Dey, P. et al. Optical coherence in atomicmonolayer transitionmetal dichalcogenides limited by electronphonon interactions. Phys. Rev. Lett. 116, 127402 (2016).
Giustino, F. Electron–phonon interactions from first principles. Rev. Mod. Phys. 89, 015003 (2017).
Perebeinos, V., Tersoff, J. & Avouris, P. Effect of exciton–phonon coupling in the calculated optical absorption of carbon nanotubes. Phys. Rev. Lett. 94, 027402 (2005).
Zeng, H., Zhao, H., Zhang, F.C. & Cui, X. Observation of exciton–phonon sideband in individual metallic singlewalled carbon nanotubes. Phys. Rev. Lett. 102, 136406 (2009).
Christiansen, D. et al. Phonon sidebands in monolayer transition metal dichalcogenides. Phys. Rev. Lett. 119, 187402 (2017).
Chen, H.Y., Sangalli, D. & Bernardi, M. Exciton–phonon interaction and relaxation times from first principles. Phys. Rev. Lett. 125, 107401 (2020).
Lin, K.Q. et al. Narrowband highlying excitons with negativemass electrons in monolayer WSe_{2}. Nat. Commun. 12, 5500 (2021).
Funk, V. et al. Spectral asymmetry of phonon sideband luminescence in monolayer and bilayer WSe_{2}. Phys. Rev. Res. 3, L042019 (2021).
Qiao, J., Kong, X., Hu, Z.X., Yang, F. & Ji, W. Highmobility transport anisotropy and linear dichroism in fewlayer black phosphorus. Nat. Commun. 5, 4475 (2014).
Li, L. et al. Direct observation of the layerdependent electronic structure in phosphorene. Nat. Nanotechnol. 12, 21–25 (2017).
Wang, J., Gudiksen, M. S., Duan, X., Cui, Y. & Lieber, C. M. Highly polarized photoluminescence and photodetection from single indium phosphide nanowires. Science 293, 1455–1457 (2001).
Capaz, R. B., Spataru, C. D., Tangney, P., Cohen, M. L. & Louie, S. G. Temperature dependence of the band gap of semiconducting carbon nanotubes. Phys. Rev. Lett. 94, 036801 (2005).
Wingreen, N. S., Jacobsen, K. W. & Wilkins, J. W. Resonant tunneling with electronphonon interaction: an exactly solvable model. Phys. Rev. Lett. 61, 1396–1399 (1988).
Wingreen, N. S., Jacobsen, K. W. & Wilkins, J. W. Inelastic scattering in resonant tunneling. Phys. Rev. B 40, 11834–11850 (1989).
Riss, A. et al. Imaging and tuning molecular levels at the surface of a gated graphene device. ACS Nano 8, 5395–5401 (2014).
Shree, S. et al. Observation of exciton–phonon coupling in MoSe_{2} monolayers. Phys. Rev. B 98, 035302 (2018).
Zhang, X., Wang, S., Ruan, H., Zhang, G. & Tao, X. Structure and growth of single crystal SiP_{2} using flux method. Solid State Sci. 37, 1–5 (2014).
Blöchl, P. E. Projector augmentedwave method. Phys. Rev. B 50, 17953–17979 (1994).
Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmentedwave method. Phys. Rev. B 59, 1758–1775 (1999).
Kresse, G. & Hafner, J. Ab initio molecular dynamics for liquid metals. Phys. Rev. B 47, 558–561 (1993).
Dion, M., Rydberg, H., Schröder, E., Langreth, D. C. & Lundqvist, B. I. Van der Waals density functional for general geometries. Phys. Rev. Lett. 92, 246401 (2004).
Togo, A. & Tanaka, I. First principles phonon calculations in materials science. Scr. Mater. 108, 1–5 (2015).
Shishkin, M. & Kresse, G. Implementation and performance of the frequencydependent GW method within the PAW framework. Phys. Rev. B 74, 035101 (2006).
Hybertsen, M. S. & Louie, S. G. Firstprinciples theory of quasiparticles: calculation of band gaps in semiconductors and insulators. Phys. Rev. Lett. 55, 1418–1421 (1985).
Shishkin, M. & Kresse, G. Selfconsistent GW calculations for semiconductors and insulators. Phys. Rev. B 75, 235102 (2007).
Mostofi, A. A. et al. wannier90: a tool for obtaining maximallylocalised Wannier functions. Comput. Phys. Commun. 178, 685–699 (2008).
Mostofi, A. A. et al. An updated version of wannier90: a tool for obtaining maximallylocalised Wannier functions. Comput. Phys. Commun. 185, 2309–2310 (2014).
Albrecht, S., Reining, L., Del Sole, R. & Onida, G. Ab initio calculation of excitonic effects in the optical spectra of semiconductors. Phys. Rev. Lett. 80, 4510–4513 (1998).
Rohlfing, M. & Louie, S. G. Electron–hole excitations in semiconductors and insulators. Phys. Rev. Lett. 81, 2312–2315 (1998).
Holstein, T. Studies of polaron motion: Part I. The molecularcrystal model. Ann. Phy. 8, 325–342 (1959).
Holstein, T. Studies of polaron motion: Part II. The “small” polaron. Ann. Phy. 8, 343–389 (1959).
Ciuchi, S., de Pasquale, F., Fratini, S. & Feinberg, D. Dynamical meanfield theory of the small polaron. Phys. Rev. B 56, 4494–4512 (1997).
Berciu, M. Green’s function of a dressed particle. Phys. Rev. Lett. 97, 036402 (2006).
Goodvin, G. L., Berciu, M. & Sawatzky, G. A. Green’s function of the Holstein polaron. Phys. Rev. B 74, 245104 (2006).
Acknowledgements
This research was supported by the National Key Basic Research Program of the Ministry of Science and Technology of China (2018YFA0306200, 2021YFA1202901), the National Natural Science Foundation of China (52072168, 51861145201, 91750101, 21733001), the Fundamental Research Funds for the Central Universities (021314380078, 021314380104, 021314380147) and Jiangsu Key Laboratory of Artificial Functional Materials. A.R. acknowledges support from the European Research Council (ERC2015AdG694097), Grupos Consolidados (IT124919) and the Max PlanckNew York City Center for NonEquilibrium Quantum Phenomena. The Flatiron Institute is a division of the Simons Foundation. P.T. acknowledges support from the Fundamental Research Funds for the Central Universities (ZG216S20A1) and the 111 Project (B17002). Part of the calculations were supported by the highperformance computing resources at Beihang University. L.W. acknowledges funding by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) under Germany’s Excellence Strategy–Cluster of Excellence Advanced Imaging of Matter (AIM) EXC 2056390715994 and by the DFG–SFB925–project 170620586. S.G.L. and C.S.O. acknowledge support by National Science Foundation grant number DMR1926004 and National Science Foundation grant number OAC2103991. X.Z. and A.T.S.W acknowledge support from MOE Tier 2 grant MOE2017T22139. X.Z. acknowleges support from a Presidential Postdoctoral Fellowship, NTU, Singapore via grant 03INS000973C150. Y.L. acknowledges the support by GrantinAid for Young Scientists (Japan Society for the Promotion of Science, JSPS) number 21K14494. We thank C. Zhang and R. Wang for their support with pumpprobe transient optical measurements and related data analysis.
Funding
Open access funding provided by Max Planck Society
Author information
Authors and Affiliations
Contributions
L.Z., J.H. and L.W. contributed equally to this work. H.T.Y., P.T. and A.R. conceived and designed the experiments and theoretical calculations. Y.F.L., H.G. and H.H. synthesized the bulk SiP_{2} crystals. L.Z., C.Z. and M.T. performed sample fabrication. L.Z., J.H., C.Q. and Z.L. performed optical measurements and analysed the optical results. L.Z., C.Q. and D.W. performed atomic force microscopy measurements. L.Z. performed reflectance contrast simulations. X.Z. and A.T.S.W. performed STEM measurement. L.W., P.T. and C.S.O. performed ab initio calculations and model simulations. L.W., P.T., C.S.O., S.L., S.G.L. and A.R. analysed theoretical calculated results. L.Z., P.T., H.T.Y., C.S.O. and A.R. wrote the manuscript with input from all authors. All authors contributed to the general discussion and revision of the manuscript.
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–26, Discussion and Tables 1–6.
Source data
Source Data Fig. 1
Statistical Source Data
Source Data Fig. 2
Statistical Source Data
Source Data Fig. 3
Statistical Source Data
Source Data Fig. 4
Statistical Source Data
Rights and permissions
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
About this article
Cite this article
Zhou, L., Huang, J., Windgaetter, L. et al. Unconventional excitonic states with phonon sidebands in layered silicon diphosphide. Nat. Mater. 21, 773–778 (2022). https://doi.org/10.1038/s41563022012853
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563022012853
This article is cited by

Unravelling the anisotropic lightmatter interaction in strainengineered trihalide MoCl3
Nano Research (2024)

An anisotropic van der Waals dielectric for symmetry engineering in functionalized heterointerfaces
Nature Communications (2023)

A tale of two dimensionalities
Nature Materials (2022)