Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox

Subjects

Abstract

Reversible anionic redox reactions represent a transformational change for creating advanced high-energy-density positive-electrode materials for lithium-ion batteries. The activation mechanism of these reactions is frequently linked to ligand-to-metal charge transfer (LMCT) processes, which have not been fully validated experimentally due to the lack of suitable model materials. Here we show that the activation of anionic redox in cation-disordered rock-salt Li1.17Ti0.58Ni0.25O2 involves a long-lived intermediate Ni3+/4+ species, which can fully evolve to Ni2+ during relaxation. Combining electrochemical analysis and spectroscopic techniques, we quantitatively identified that the reduction of this Ni3+/4+ species goes through a dynamic LMCT process (Ni3+/4+–O2− → Ni2+–On). Our findings provide experimental validation of previous theoretical hypotheses and help to rationalize several peculiarities associated with anionic redox, such as cationic–anionic redox inversion and voltage hysteresis. This work also provides additional guidance for designing high-capacity electrodes by screening appropriate cationic species for mediating LMCT.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Structure and electrochemistry of xLi2TiO3·(1 − x)LiTi0.5Ni0.5O2 (0 < x < 1).
Fig. 2: Redox mechanism of 0.4LTO–0.6LTNO studied by ex situ XAS and DFT calculations.
Fig. 3: In situ X-ray diffraction patterns for 0.4LTO–0.6LTNO.
Fig. 4: Quantifying the LMCT process by electrochemical titration.
Fig. 5: LMCT characterized by HAXPES with an  = 10 keV photon energy and structural analysis.
Fig. 6: Rationalizing redox inversion and voltage hysteresis.

Similar content being viewed by others

Data availability

All data supporting the findings of this article and its Supplementary Information will be made available upon reasonable request to the authors. Source data are provided with this paper.

References

  1. Rozier, P. & Tarascon, J. M. Review—Li-rich layered oxide cathodes for next-generation li-ion batteries: chances and challenges. J. Electrochem. Soc. 162, A2490 (2015).

    Article  CAS  Google Scholar 

  2. Yabuuchi, N. Material design concept of lithium-excess electrode materials with rocksalt-related structures for rechargeable non-aqueous batteries. Chem. Rec. 19, 690 (2018).

    Article  Google Scholar 

  3. Sathiya, M. et al. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. Nat. Mater. 12, 827–835 (2013).

    Article  CAS  Google Scholar 

  4. Assat, G. & Tarascon, J.-M. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. Nat. Energy 3, 373–386 (2018).

    Article  CAS  Google Scholar 

  5. Li, B. & Xia, D. Anionic redox in rechargeable lithium batteries. Adv. Mater. 29, 1701054 (2017).

    Article  Google Scholar 

  6. Li, M. et al. Cationic and anionic redox in lithium-ion based batteries. Chem. Soc. Rev. 49, 1688–1705 (2020).

    Article  CAS  Google Scholar 

  7. Assat, G., Delacourt, C., Corte, D. A. D. & Tarascon, J.-M. Editors’ choice—Practical assessment of anionic redox in Li-rich layered oxide cathodes: a mixed blessing for high energy Li-ion batteries. J. Electrochem. Soc. 163, A2965–A2976 (2016).

    Article  CAS  Google Scholar 

  8. Seo, D. H. et al. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. Nat. Chem. 8, 692–697 (2016).

    Article  CAS  Google Scholar 

  9. Abakumov, A. M., Fedotov, S. S., Antipov, E. V. & Tarascon, J. M. Solid state chemistry for developing better metal-ion batteries. Nat. Commun. 11, 4976 (2020).

    Article  CAS  Google Scholar 

  10. Ben Yahia, M., Vergnet, J., Saubanere, M. & Doublet, M. L. Unified picture of anionic redox in Li/Na-ion batteries. Nat. Mater. 18, 496–502 (2019).

    Article  Google Scholar 

  11. Li, B. et al. Thermodynamic activation of charge transfer in anionic redox process for Li-ion batteries. Adv. Funct. Mater. 28, 1704864 (2018).

    Article  Google Scholar 

  12. Saha, S. et al. Exploring the bottlenecks of anionic redox in Li-rich layered sulfides. Nat. Energy 4, 977–987 (2019).

    Article  CAS  Google Scholar 

  13. Flamary-Mespoulie, F. et al. Lithium-rich layered titanium sulfides: cobalt- and nickel-free high capacity cathode materials for lithium-ion batteries. Energy Storage Mater. 26, 213–222 (2020).

    Article  Google Scholar 

  14. Leube, B. T. et al. Activation of anionic redox in d(0) transition metal chalcogenides by anion doping. Nat. Commun. 12, 5485 (2021).

    Article  CAS  Google Scholar 

  15. Yabuuchi, N. et al. High-capacity electrode materials for rechargeable lithium batteries: Li3NbO4-based system with cation-disordered rocksalt structure. Proc. Natl Acad. Sci. USA 112, 7650–7655 (2015).

    Article  CAS  Google Scholar 

  16. Hong, J. et al. Metal-oxygen decoordination stabilizes anion redox in Li-rich oxides. Nat. Mater. 18, 256–265 (2019).

    Article  CAS  Google Scholar 

  17. Radin, M. D., Vinckeviciute, J., Seshadri, R. & Vander Ven, A. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. Nat. Energy 4, 639–646 (2019).

    Article  CAS  Google Scholar 

  18. Li, B. et al. Correlating ligand-to-metal charge transfer with voltage hysteresis in a Li-rich rock-salt compound exhibiting anionic redox. Nat. Chem. 13, 1070–1080 (2021).

    Article  CAS  Google Scholar 

  19. De Ridder, R., van Tendeloo, G. & Amelinckx, S. A cluster model for the transition from the short-range order to the long-range order state in f.c.c. based binary systems and its study by means of electron diffraction. Acta Crystallogr. A 32, 216–224 (1976).

    Article  Google Scholar 

  20. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  21. Jacquet, Q. et al. Charge transfer band gap as an indicator of hysteresis in Li-disordered rock salt cathodes for Li-ion batteries. J. Am. Chem. Soc. 141, 11452–11464 (2019).

    Article  CAS  Google Scholar 

  22. Farges, F. Coordination of Ti4+ in silicate glasses: a high-resolution XANES spectroscopy study at the Ti K-edge. Am. Mineral. 82, 36–43 (1997).

    Article  CAS  Google Scholar 

  23. Achkar, A. J., Regier, T. Z., Monkman, E. J., Shen, K. M. & Hawthorn, D. G. Determination of total X-ray absorption coefficient using non-resonant X-ray emission. Sci. Rep. 1, 182 (2011).

    Article  CAS  Google Scholar 

  24. Qiao, R. et al. Direct experimental probe of the Ni(II)/Ni(III)/Ni(IV) redox evolution in LiNi0.5Mn1.5O4 electrodes. J. Phys. Chem. C 119, 27228–27233 (2015).

    Article  CAS  Google Scholar 

  25. Yoon, W.-S., Chung, K. Y., McBreen, J., Fischer, D. A. & Yang, X.-Q. Changes in electronic structure of the electrochemically Li-ion deintercalated LiNiO2 system investigated by soft X-ray absorption spectroscopy. J. Power Sources 163, 234–237 (2006).

    Article  CAS  Google Scholar 

  26. Croy, J. R. et al. Examining hysteresis in composite xLi2MnO3·(1−x)LiMO2 cathode structures. J. Phys. Chem. C 117, 6525–6536 (2013).

    Article  CAS  Google Scholar 

  27. Sawatzky, G. A. & Allen, J. W. Magnitude and origin of the band gap in NiO. Phys. Rev. Lett. 53, 2339–2342 (1984).

    Article  CAS  Google Scholar 

  28. Assat, G., Iadecola, A., Delacourt, C., Dedryvère, R. & Tarascon, J.-M. Decoupling cationic–anionic redox processes in a model Li-rich cathode via operando X-ray absorption spectroscopy. Chem. Mater. 29, 9714–9724 (2017).

    Article  CAS  Google Scholar 

  29. Marcus, R. A. Electron transfer reactions in chemistry. Theory and experiment. Rev. Mod. Phys. 65, 599–610 (1993).

    Article  CAS  Google Scholar 

  30. Kim, M. G. et al. Ni and oxygen K-edge XAS investigation into the chemical bonding for lithiation of LiyNi1−xAlxO2 cathode material. Electrochim. Acta 50, 501–504 (2004).

    Article  CAS  Google Scholar 

  31. Kleiner, K. et al. On the origin of reversible and irreversible reactions in LiNixCo(1−x)/2Mn(1−x)/2O2. J. Electrochem. Soc. https://doi.org/10.1149/1945-7111/ac3c21 (2021).

  32. Zhuo, Z. et al. Distinct oxygen redox activities in Li2MO3 (M = Mn, Ru, Ir). ACS Energy Lett. 6, 3417–3424 (2021).

    Article  CAS  Google Scholar 

  33. Bianchini, M. et al. From LiNiO2 to Li2NiO3: synthesis, structures and electrochemical mechanisms in Li-rich nickel oxides. Chem. Mater. 32, 9211–9227 (2020).

    Article  CAS  Google Scholar 

  34. Pearce, P. E. et al. Evidence for anionic redox activity in a tridimensional-ordered Li-rich positive electrode β-Li2IrO3. Nat. Mater. 16, 580–586 (2017).

    Article  CAS  Google Scholar 

  35. Assat, G. et al. Fundamental interplay between anionic/cationic redox governing the kinetics and thermodynamics of lithium-rich cathodes. Nat. Commun. 8, 2219 (2017).

    Article  Google Scholar 

  36. Yabuuchi, N. et al. Origin of stabilization and destabilization in solid-state redox reaction of oxide ions for lithium-ion batteries. Nat. Commun. 7, 13814 (2016).

    Article  CAS  Google Scholar 

  37. Taylor, Z. N. et al. Stabilization of O–O bonds by d(0) cations in Li4+xNi1−xWO6 (0 ≤ x ≤ 0.25) rock salt oxides as the origin of large voltage hysteresis. J. Am. Chem. Soc. 141, 7333–7346 (2019).

    Article  CAS  Google Scholar 

  38. Yabuuchi, N., Tahara, Y., Komaba, S., Kitada, S. & Kajiya, Y. Synthesis and electrochemical properties of Li4MoO5–NiO binary system as positive electrode materials for rechargeable lithium batteries. Chem. Mater. 28, 416–419 (2016).

    Article  CAS  Google Scholar 

  39. Leube, B. T. et al. Layered sodium titanium trichalcogenide Na2TiCh3 framework (Ch = S, Se): a rich crystal and electrochemical chemistry. Chem. Mater. https://doi.org/10.1021/acs.chemmater.1c04374 (2022).

  40. Barbara, P. F., Meyer, T. J. & Ratner, M. A. Contemporary issues in electron transfer research. J. Phys. Chem. C 100, 13148–13168 (1996).

    Article  CAS  Google Scholar 

  41. Wegeberg, C. & Wenger, O. S. Luminescent first-row transition metal complexes. JACS Au 1, 1860–1876 (2021).

    Article  CAS  Google Scholar 

  42. Chabera, P. et al. A low-spin Fe(III) complex with 100-ps ligand-to-metal charge transfer photoluminescence. Nature 543, 695–699 (2017).

    Article  CAS  Google Scholar 

  43. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B 192, 55–69 (1993).

    Article  Google Scholar 

  44. Zhang, L. et al. Unraveling gas evolution in sodium batteries by online electrochemical mass spectrometry. Energy Storage Mater. 42, 12–21 (2021).

    Article  CAS  Google Scholar 

  45. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  46. Rueff, J. P., Rault, J. E., Ablett, J. M., Utsumi, Y. & Céolin, D. HAXPES for materials science at the GALAXIES beamline. Synchrotron Radiat. News 31, 4–9 (2018).

    Article  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    Article  CAS  Google Scholar 

  49. Kresse, G. & Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  50. Wang, L., Maxisch, T. & Ceder, G. Oxidation energies of transition metal oxides within the GGA + U framework. Phys. Rev. B 73,195107 (2006).

Download references

Acknowledgements

This research used resources of the Advanced Photon Source, a US Department of Energy (DOE) Office of Science User Facility, operated for the DOE Office of Science by Argonne National Laboratory under contract number DE-AC02-06CH11357. We are grateful to J. Freeland, T. Wu and G. Sterbinsky for their help during mail-in XAS measurements at the Advanced Photon Source. J.C. and I.R. acknowledge support from the National Science Foundation, under grant number DMR-1809372. K.K. acknowledges support from the National Science Foundation, under grant number CBET-1800357. A.M.A. and A.V.M. are grateful to the Russian Science Foundation for financial support (grant 20-13-00233). Access to TEM facilities was granted by the Advance Imaging Core Facility of Skoltech. HAXPES experiments (proposal no. 99210184) were performed on the GALAXIES beamline at the SOLEIL Synchrotron, France. The Ni K-edge XAS was collected on the ROCK beamline at the SOLEIL Synchrotron through a rapid access for urgent need. We are grateful to J. Sottmann and J.-P. Rueff for their assistance during the HAXPES experiments. J.-M.T and B.L. acknowledge funding from the European Research Council (ERC) (FP/2014)/ERC Grant-Project 670116-ARPEMA.

Author information

Authors and Affiliations

Authors

Contributions

B.L. and J.-M.T. conceived the idea and designed the experiments. B.L. carried out the synthesis, structural characterization, electrochemical analysis and DFT calculations. R.D. collected and analysed the HAXPES data. K.K., I.R. and J.C. collected the XAS data and carried out the analysis. A.V.M., O.V.E. and A.M.A. performed TEM experiments and did the analysis. L.Z. performed the OEMS experiments and data analysis. S.B. collected the Ni K-edge XAS data during relaxation. T.K. did the protocol and assembling of ASSB cells. B.L. and J.-M.T. wrote the manuscript with the contributions from all the authors.

Corresponding author

Correspondence to Jean-Marie Tarascon.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Kisuk Kang and Zhaoxiang Wang for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, Notes I–III and Table 1.

Source data

Source Data Fig. 1

Statistical source data

Source Data Fig. 2

Statistical source data

Source Data Fig. 4

Statistical source data

Source Data Fig. 6

Statistical source data

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, B., Kumar, K., Roy, I. et al. Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox. Nat. Mater. 21, 1165–1174 (2022). https://doi.org/10.1038/s41563-022-01278-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01278-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing