Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature

Abstract

Exciton polaritons, the part-light and part-matter quasiparticles in semiconductor optical cavities, are promising for exploring Bose–Einstein condensation, non-equilibrium many-body physics and analogue simulation at elevated temperatures. However, a room-temperature polaritonic platform on par with the GaAs quantum wells grown by molecular beam epitaxy at low temperatures remains elusive. The operation of such a platform calls for long-lifetime, strongly interacting excitons in a stringent material system with large yet nanoscale-thin geometry and homogeneous properties. Here, we address this challenge by adopting a method based on the solution synthesis of excitonic halide perovskites grown under nanoconfinement. Such nanoconfinement growth facilitates the synthesis of smooth and homogeneous single-crystalline large crystals enabling the demonstration of XY Hamiltonian lattices with sizes up to 10 × 10. With this demonstration, we further establish perovskites as a promising platform for room temperature polaritonic physics and pave the way for the realization of robust mode-disorder-free polaritonic devices at room temperature.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of single-crystalline excitonic halide perovskites in DBR nanocavities.
Fig. 2: Room-temperature demonstration of polariton XY Hamiltonian square 2 × 2 lattices.
Fig. 3: Extended polariton lattices.

Similar content being viewed by others

Data availability

The authors declare that the main data supporting the findings of this study are available within the paper. Extra data are available from the corresponding authors upon reasonable request. Source data are provided with this paper.

References

  1. Buluta, I. & Nori, F. Quantum simulators. Science 326, 108–111 (2009).

    Article  CAS  Google Scholar 

  2. Struck, J. et al. Quantum simulation of frustrated classical magnetism in triangular optical lattices. Science 333, 996–999 (2011).

    Article  CAS  Google Scholar 

  3. Gross, C. & Bloch, I. Quantum simulations with ultracold atoms in optical lattices. Science 357, 995–1001 (2017).

    Article  CAS  Google Scholar 

  4. Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    Article  CAS  Google Scholar 

  5. Boulier, T. et al. Microcavity polaritons for quantum simulation. Adv. Quantum Technol. 3, 2000052 (2020).

  6. Byrnes, T., Kim, N. Y. & Yamamoto, Y. Exciton–polariton condensates. Nat. Phys. 10, 803–813 (2014).

    Article  CAS  Google Scholar 

  7. Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298, 199–202 (2002).

    Article  CAS  Google Scholar 

  8. Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    Article  CAS  Google Scholar 

  9. Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    Article  CAS  Google Scholar 

  10. Plumhof, J. D., Stoeferle, T., Mai, L., Scherf, U. & Mahrt, R. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    Article  CAS  Google Scholar 

  11. Daskalakis, K. S., Maier, S. A., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    Article  CAS  Google Scholar 

  12. Kang, J. W. et al. Room temperature polariton lasing in quantum heterostructure nanocavities. Sci. Adv. 5, eaau9338 (2019).

    Article  CAS  Google Scholar 

  13. Amo, A. et al. Polariton superfluids reveal quantum hydrodynamic solitons. Science 332, 1167–1170 (2011).

    Article  CAS  Google Scholar 

  14. Sich, M. et al. Observation of bright polariton solitons in a semiconductor microcavity. Nat. Photon. 6, 50–55 (2012).

    Article  CAS  Google Scholar 

  15. Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    Article  CAS  Google Scholar 

  16. Klembt, S. et al. Exciton–polariton topological insulator. Nature 562, 552–556 (2018).

    Article  CAS  Google Scholar 

  17. Gianfrate, A. et al. Measurement of the quantum geometric tensor and of the anomalous Hall drift. Nature 578, 381–385 (2020).

    Article  CAS  Google Scholar 

  18. Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    Article  CAS  Google Scholar 

  19. Passarelli, J. V. et al. Tunable exciton binding energy in 2D hybrid layered perovskites through donor–acceptor interactions within the organic layer. Nat. Chem. 12, 672–682 (2020).

    Article  CAS  Google Scholar 

  20. Baranowski, M. & Plochocka, P. Excitons in metal‐halide perovskites. Adv. Energy Mater. 10, 1903659 (2020).

    Article  CAS  Google Scholar 

  21. Stranks, S. D. & Snaith, H. J. Metal-halide perovskites for photovoltaic and light-emitting devices. Nat. Nanotechnol. 10, 391–402 (2015).

    Article  CAS  Google Scholar 

  22. Sutherland, B. R. & Sargent, E. H. Perovskite photonic sources. Nat. Photon. 10, 295–302 (2016).

    Article  CAS  Google Scholar 

  23. Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    Article  CAS  Google Scholar 

  24. Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    Article  CAS  Google Scholar 

  25. Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci. USA 116, 20274–20279 (2019).

    Article  CAS  Google Scholar 

  26. Su, R. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. 20, 1315–1324 (2021).

    Article  CAS  Google Scholar 

  27. Kéna-Cohen, S., Davanço, M. & Forrest, S. R. Strong exciton-photon coupling in an organic single crystal microcavity. Phys. Rev. Lett. 101, 116401 (2008).

    Article  CAS  Google Scholar 

  28. Wang, X. D., Li, W. G., Liao, J. F. & Kuang, D. B. Recent advances in halide perovskite single-crystal thin films: fabrication methods and optoelectronic applications. Sol. RRL 3, 1800294 (2019).

    Article  CAS  Google Scholar 

  29. Chen, Z. et al. Thin single crystal perovskite solar cells to harvest below-bandgap light absorption. Nat. Commun. 8, 1890 (2017).

    Article  CAS  Google Scholar 

  30. Liu, Y. et al. Multi-inch single-crystalline perovskite membrane for high-detectivity flexible photosensors. Nat. Commun. 9, 5302 (2018).

    Article  CAS  Google Scholar 

  31. Terças, H., Flayac, H., Solnyshkov, D. D. & Malpuech, G. Non-Abelian gauge fields in photonic cavities and photonic superfluids. Phys. Rev. Lett. 112, 066402 (2014).

    Article  CAS  Google Scholar 

  32. Kéna-Cohen, S., Davanço, M. & Forrest, S. R. Resonant Rayleigh scattering from an anisotropic organic single-crystal microcavity. Phys. Rev. B 78, 153102 (2008).

    Article  CAS  Google Scholar 

  33. Rechcinska, K. et al. Engineering spin-orbit synthetic Hamiltonians in liquid-crystal optical cavities. Science 366, 727–730 (2019).

    Article  CAS  Google Scholar 

  34. Ren, J. et al. Nontrivial band geometry in an optically active system. Nat. Commun. 12, 689 (2021).

    Article  CAS  Google Scholar 

  35. Whittaker, C. E. et al. Optical analogue of Dresselhaus spin–orbit interaction in photonic graphene. Nat. Photon. 15, 193–196 (2021).

    Article  CAS  Google Scholar 

  36. Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  CAS  Google Scholar 

  37. kosterlitz, J. M. & Thouless, D. J. Ordering, metastability and phase transitions in two-dimensional systems. J. Phys. C 6, 1181–1203 (1973).

    Article  CAS  Google Scholar 

  38. Dusel, M. et al. Room temperature organic exciton–polariton condensate in a lattice. Nat. Commun. 11, 2863 (2020).

    Article  CAS  Google Scholar 

  39. Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    Article  CAS  Google Scholar 

  40. Töpfer, J. D. et al. Engineering spatial coherence in lattices of polariton condensates. Optica 8, 106–113 (2021).

    Article  Google Scholar 

  41. Ohadi, H. et al. Nontrivial phase coupling in polariton multiplets. Phys. Rev. X 6, 031032 (2016).

    Google Scholar 

  42. Wouters, M., Carusotto, I. & Ciuti, C. Spatial and spectral shape of inhomogeneous nonequilibrium exciton-polariton condensates. Phys. Rev. B 77, 115340 (2008).

    Article  CAS  Google Scholar 

  43. Tosi, G. et al. Geometrically locked vortex lattices in semiconductor quantum fluids. Nat. Commun. 3, 1243 (2012).

    Article  CAS  Google Scholar 

  44. Kalinin, K. P. & Berloff, N. G. Networks of non-equilibrium condensates for global optimization. New J. Phys. 20, 113023 (2018).

    Article  CAS  Google Scholar 

  45. Kalinin, K. P. & Berloff, N. G. Polaritonic network as a paradigm for dynamics of coupled oscillators. Phys. Rev. B 100, 245306 (2019).

    Article  CAS  Google Scholar 

  46. Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    Article  CAS  Google Scholar 

  47. Luo, S. et al. Classical spin chains mimicked by room-temperature polariton condensates. Phys. Rev. Appl. 13, 44052 (2020).

    Article  CAS  Google Scholar 

  48. Whittaker, C. E. et al. Exciton polaritons in a two-dimensional Lieb lattice with spin-orbit coupling. Phys. Rev. Lett. 120, 097401 (2018).

    Article  CAS  Google Scholar 

  49. Liu, W. et al. Generation of helical topological exciton-polaritons. Science 370, 600–604 (2020).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank P. James Schuck and F. Xue for reading the manuscript and valuable comments and A. Gao from SVOTEK Inc. for assisting with the high-quality DBR mirror coating. W.B. and K.P. acknowledge support from the Office of Naval Research (award no. N00014-21-1-2099) and National Science Foundation (award no. OIA-2044049). W.B. thanks the CAREER support from the National Science Foundation (award no. DMR-2143041). X.Z. and R.T. thank the support by the Gordon and Betty Moore Foundation (award no. 5722) and the Ernest S. Kuh Endowed Chair Professorship. S.K.-C. and L.H. acknowledge funding from the Canada Research Chairs programme and the Army Research Office (W911NF1810149). The work of Q.L. and G.R.F. was supported by the US Department of Energy, Office of Science, Basic Energy Science, Chemical Sciences, Geosciences, and Biosciences Division. Use of the Center for Nanoscale Materials, a US Department of Energy Office of Science User Facility, was supported by the US Department of Energy, Office of Basic Energy Sciences under contract no. DE-AC02-06CH11357.

Author information

Authors and Affiliations

Authors

Contributions

W.B., X.Z., R.T. and K.P. initiated the project and conceived the experiments. R.T. fabricated the microcavities and grew and characterized the perovskite materials. K.P. performed all optical measurements except lifetime characterizations. Q.L. and G.R.F. performed the PL lifetime experiments. S.K.-C., D.J. and L.H. provided valuable insight and suggestions. W.B. and X.Z. supervised the whole project. R.T., K.P. and W.B. prepared the initial draught of the manuscript. K.P., W.B., R.T. and X.Z. led the efforts in revising the manuscript with the other authors’ participation.

Corresponding authors

Correspondence to Xiang Zhang or Wei Bao.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Natalia Berloff, Hui Deng and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–27 and text.

Reporting Summary

Source data

Source Data Fig. 1

Raw data for plot and fitting in Fig. 1.

Source Data Fig. 2

Raw data for plot and fitting in Fig. 2a.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tao, R., Peng, K., Haeberlé, L. et al. Halide perovskites enable polaritonic XY spin Hamiltonian at room temperature. Nat. Mater. 21, 761–766 (2022). https://doi.org/10.1038/s41563-022-01276-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01276-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing