Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

High-entropy enhanced capacitive energy storage

Abstract

Electrostatic dielectric capacitors are essential components in advanced electronic and electrical power systems due to their ultrafast charging/discharging speed and high power density. A major challenge, however, is how to improve their energy densities to effectuate the next-generation applications that demand miniaturization and integration. Here, we report a high-entropy stabilized Bi2Ti2O7-based dielectric film that exhibits an energy density as high as 182 J cm−3 with an efficiency of 78% at an electric field of 6.35 MV cm−1. Our results reveal that regulating the atomic configurational entropy introduces favourable and stable microstructural features, including lattice distorted nano-crystalline grains and a disordered amorphous-like phase, which enhances the breakdown strength and reduces the polarization switching hysteresis, thus synergistically contributing to the energy storage performance. This high-entropy approach is expected to be widely applicable for the development of high-performance dielectrics.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Phase and structure evolution with the increase of entropy.
Fig. 2: Evolution of dielectric, leakage current density and breakdown strength properties of the films with increasing entropy.
Fig. 3: Lattice distortion, nano-crystalline grains and amorphous-like phase in the high-entropy films.
Fig. 4: Energy storage performance of the entropy-modulated films.

Data availability

The data supporting the findings of this study are available within the manuscript and its Supplementary Information files. Any other relevant data are also available upon request from Y.-H.L. Source data are provided with this paper and are available at https://figshare.com/articles/dataset/SourceData/19642233.

References

  1. Chu, B. et al. A dielectric polymer with high electric energy density and fast discharge speed. Science 313, 334–336 (2006).

    CAS  Article  Google Scholar 

  2. Wang, G. et al. Electroceramics for high-energy density capacitors: current status and future perspectives. Chem. Rev. 121, 6124–6172 (2021).

    CAS  Article  Google Scholar 

  3. Li, Q. et al. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523, 576–579 (2015).

    CAS  Article  Google Scholar 

  4. Li, J. et al. Grain-orientation-engineered multilayer ceramic capacitors for energy storage applications. Nat. Mater. 19, 999–1005 (2020).

    CAS  Article  Google Scholar 

  5. Yang, L. et al. Perovskite lead-free dielectrics for energy storage applications. Prog. Mater. Sci. 102, 72–108 (2019).

    CAS  Article  Google Scholar 

  6. Huang, H. & Scott, J. F. Ferroelectric Materials for Energy Applications 119–168 (Wiley, 2018).

  7. Kim, J. et al. Ultrahigh capacitive energy density in ion-bombarded relaxor ferroelectric films. Science 369, 81–84 (2020).

    CAS  Article  Google Scholar 

  8. Shen, B., Li, Y. & Hao, X. Multifunctional all-inorganic flexible capacitor for energy storage and electrocaloric refrigeration over a broad temperature range based on PLZT 9/65/35 thick films. ACS Appl. Mater. Interfaces 11, 34117–34127 (2019).

    CAS  Article  Google Scholar 

  9. Peng, B. et al. Large energy storage density and high thermal stability in a highly textured (111)-oriented Pb0.8Ba0.2ZrO3 relaxor thin film with the coexistence of antiferroelectric and ferroelectric phases. ACS Appl. Mater. Interfaces 7, 13512–13517 (2015).

    CAS  Article  Google Scholar 

  10. Cho, S. et al. Strongly enhanced dielectric and energy storage properties in lead-free perovskite titanate thin films by alloying. Nano Energy 45, 398–406 (2018).

    CAS  Article  Google Scholar 

  11. Zhu, H. et al. Increasing energy storage capabilities of space-charge dominated ferroelectric thin films using interlayer coupling. Acta Mater. 122, 252–258 (2017).

    CAS  Article  Google Scholar 

  12. Yang, B. et al. Bi3.25La0.75Ti3O12 thin film capacitors for energy storage applications. Appl. Phys. Lett. 11, 183903 (2017).

    Article  CAS  Google Scholar 

  13. Pan, Z. et al. Substantially improved energy storage capability of ferroelectric thin films for application in high-temperature capacitors. J. Mater. Chem. A 9, 9281–9290 (2021).

    CAS  Article  Google Scholar 

  14. Pan, H. et al. Ultrahigh energy storage in superparaelectric relaxor ferroelectrics. Science 374, 100–104 (2021).

    CAS  Article  Google Scholar 

  15. Pan, H. et al. Ultrahigh–energy density lead-free dielectric films via polymorphic nanodomain design. Science 365, 578–582 (2019).

    CAS  Article  Google Scholar 

  16. Li, Y. et al. Ultrahigh-energy storage properties of (PbCa)ZrO3 antiferroelectric thin films via constructing a pyrochlore nanocrystalline structure. ACS Nano 14, 6857–6865 (2020).

    CAS  Article  Google Scholar 

  17. Sun, Z. et al. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mater. 29, 1604427 (2017).

    Article  CAS  Google Scholar 

  18. Brown, E. et al. Controlling dielectric and relaxor-ferroelectric properties for energy storage by tuning Pb0.92La0.08Zr0.52Ti0.48O3 film thickness. ACS Appl. Mater. Interfaces 6, 22417–22422 (2014).

    CAS  Article  Google Scholar 

  19. Wang, K. et al. Superparaelectric (Ba0.95,Sr0.05)(Zr0.2,Ti0.8)O3 ultracapacitors. Adv. Energy Mater. 10, 2001778 (2020).

    CAS  Article  Google Scholar 

  20. Jiang, B. et al. High-entropy-stabilized chalcogenides with high thermoelectric performance. Science 371, 830–834 (2021).

    CAS  Article  Google Scholar 

  21. Wang, Q. et al. Multi-anionic and -cationic compounds: new high entropy materials for advanced Li-ion batteries. Energy Environ. Sci. 12, 2433–2442 (2019).

    CAS  Article  Google Scholar 

  22. Loffler, T. et al. Discovery of a multinary noble metal-free oxygen reduction catalyst. Adv. Energy Mater. 8, 1802269 (2018).

    Article  CAS  Google Scholar 

  23. Sarkar, A. et al. High-entropy oxides: fundamental aspects and electrochemical properties. Adv. Mater. 31, 1806236 (2019).

    Article  CAS  Google Scholar 

  24. Oses, C., Toher, C. & Curtarolo, S. High-entropy ceramics. Nat. Rev. Mater. 5, 295–309 (2020).

    CAS  Article  Google Scholar 

  25. Rost, C. M. et al. Entropy-stabilized oxides. Nat. Commun. 6, 8485 (2015).

    CAS  Article  Google Scholar 

  26. Berardan, D., Franger, S., Dragoe, D., Meena, A. K. & Dragoe, N. Colossal dielectric constant in high entropy oxides. Phys. Status Solidi RRL 10, 328–333 (2016).

    CAS  Article  Google Scholar 

  27. Xiong, W. et al. Low-loss high entropy relaxor-like ferroelectrics with A-site disorder. J. Eur. Ceram. Soc. 41, 2979–2985 (2021).

    CAS  Article  Google Scholar 

  28. Zhang, M. et al. Multi elements substituted aurivillius phase relaxor ferroelectrics using high entropy design concept. Mater. Des. 200, 109447 (2021).

    CAS  Article  Google Scholar 

  29. Liu, J., Ren, K., Ma, C., Du, H. & Wang, Y. Dielectric and energy storage properties of flash-sintered high-entropy (Bi0.2Na0.2K0.2Ba0.2Ca0.2)TiO3 ceramic. Ceram. Int. 46, 20576–20581 (2020).

    CAS  Article  Google Scholar 

  30. Yang, W. & Zheng, G. High energy-storage density and efficiency in nanostructured (Bi0.2Na0.2K0.2La0.2Sr0.2)TiO3 high-entropy ceramics. J. Am. Ceram. Soc. 105, 1083–1094 (2021).

    Article  CAS  Google Scholar 

  31. Chon, U., Yi, G.-C. & Jang, H. M. Fatigue-free behavior of highly oriented Bi3.25La0.75Ti3O12 thin films grown on Pt/Ti/SiO2/Si (100) by metalorganic solution decomposition. Appl. Phys. Lett. 78, 658–660 (2001).

    CAS  Article  Google Scholar 

  32. Esquivel-Elizondo, J. R., Hinojosa, B. B. & Nino, J. C. Bi2Ti2O7: it is not what you have read. Chem. Mater. 23, 4965–4974 (2011).

    CAS  Article  Google Scholar 

  33. Kargin, Y. F., Ivicheva, S. N. & Volkov, V. V. Phase relations in the Bi2O3-TiO2 system. Russ. J. Inorg. Chem. 60, 619–625 (2015).

    CAS  Article  Google Scholar 

  34. Dragoe, N. & Berardan, D. Order emerging from disorder. Science 366, 573–574 (2019).

    CAS  Article  Google Scholar 

  35. Santos, V. B., M’Peko, J.-C., Mir, M., Mastelaro, V. R. & Hernandes, A. C. Microstructural, structural and electrical properties of La3+-modified Bi4Ti3O12 ferroelectric ceramics. J. Eur. Ceram. Soc. 29, 751–756 (2009).

    CAS  Article  Google Scholar 

  36. Zhao, Y. et al. Achieving an ultra-high capacitive energy density in ferroelectric films consisting of superfine columnar nanograins. Energy Storage Mater. 39, 81–88 (2021).

    CAS  Article  Google Scholar 

  37. Michael, E. K. & Trolier-McKinstry, S. Cubic pyrochlore bismuth zinc niobate thin films for high-temperature dielectric energy storage. J. Am. Ceram. Soc. 98, 1223–1229 (2015).

    CAS  Article  Google Scholar 

  38. Xie, J. et al. Achieving ultrahigh energy storage performance in bismuth magnesium titanate film capacitors via amorphous-structure engineering. J. Mater. Chem. C 7, 13632–13639 (2019).

    CAS  Article  Google Scholar 

  39. Chen, X. et al. Direct observation of chemical short-range order in a medium-entropy alloy. Nature 592, 712–716 (2021).

    CAS  Article  Google Scholar 

  40. Zhao, Z., Xiang, H., Dai, F.-Z., Peng, Z. & Zhou, Y. (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)2Zr2O7: a novel high-entropy ceramic with low thermal conductivity and sluggish grain growth rate. J. Mater. Sci. Technol. 35, 2647–2651 (2019).

    CAS  Article  Google Scholar 

  41. Tsai, K.-Y., Tsai, M.-H. & Yeh, J.-W. Sluggish diffusion in Co-Cr-Fe-Mn-Ni high-entropy alloys. Acta Mater. 61, 4887–4897 (2013).

    CAS  Article  Google Scholar 

  42. Gao, M. C., Yeh, J.-W., Liaw, P. K. & Zhang, Y. (eds) High-Entropy Alloys: Fundamentals and Applications 238–240 (Springer, 2016).

  43. Mu, S. et al. Uncovering electron scattering mechanisms in NiFeCoCrMn derived concentrated solid solution and high entropy alloys. npj Comput. Mater. 5, 1 (2019).

    CAS  Article  Google Scholar 

  44. Waser, R. & Hagenbeck, R. Grain boundaries in dielectric and mixed conducting ceramics. Acta Mater. 48, 797–825 (2000).

    CAS  Article  Google Scholar 

  45. Li, D. et al. Enhanced energy storage properties achieved in Na0.5Bi0.5TiO3-based ceramics via composition design and domain engineering. Chem. Eng. J. 419, 129601 (2021).

    CAS  Article  Google Scholar 

  46. Nasyrov, K. A. & Gritsenko, V. A. Transport mechanisms of electrons and holes in dielectric films. Phys. Uspekhi 183, 1099–1114 (2013).

    Google Scholar 

  47. Zhang, Y. et al. Ultrahigh energy storage and electrocaloric performance achieved in SrTiO3 amorphous thin films via polar cluster engineering. J. Mater. Chem. A 7, 17797–17805 (2019).

    CAS  Article  Google Scholar 

  48. Chen, X. et al. Giant energy storage density in lead-free dielectric thin films deposited on Si wafers with an artificial dead-layer. Nano Energy 78, 105390 (2020).

    CAS  Article  Google Scholar 

  49. Yang, C. et al. Fatigue-free and bending-endurable flexible Mn-doped Na0.5Bi0.5TiO3-BaTiO3-BiFeO3 film capacitor with an ultrahigh energy storage performance. Adv. Energy Mater. 9, 1803949 (2019).

    Article  CAS  Google Scholar 

  50. Zhang, T. et al. High-energy storage density and excellent temperature stability in antiferroelectric/ferroelectric bilayer thin films. J. Am. Ceram. Soc. 100, 3080–3087 (2017).

    CAS  Article  Google Scholar 

  51. Hao, X., Wang, Y., Zhang, L., Zhang, L. & An, S. Composition-dependent dielectric and energy-storage properties of (Pb,La)(Zr,Sn,Ti)O3 antiferroelectric thick films. Appl. Phys. Lett. 102, 163903 (2013).

    Article  CAS  Google Scholar 

  52. Hu, Z., Ma, B., Koritala, R. E. & Balachandran, U. Temperature-dependent energy storage properties of antiferroelectric Pb0.96La0.04Zr0.98Ti0.02O3 thin films. Appl. Phys. Lett. 104, 263902 (2014).

    Article  CAS  Google Scholar 

  53. Xie, Z. et al. Large enhancement of the recoverable energy storage density and piezoelectric response in relaxor-ferroelectric capacitors by utilizing the seeding layers engineering. Appl. Phys. Lett. 106, 202901 (2015).

    Article  CAS  Google Scholar 

  54. Pan, H. et al. Giant energy density and high efficiency achieved in bismuth ferrite-based film capacitors via domain engineering. Nat. Commun. 9, 1813 (2018).

    Article  CAS  Google Scholar 

  55. Wang, J. et al. Bi(Mg0.5Ti0.5)O3 addition induced high recoverable energy-storage density and excellent electrical properties in lead-free Na0.5Bi0.5TiO3-based thick films. J. Eur. Ceram. Soc. 39, 255–263 (2019).

    CAS  Article  Google Scholar 

  56. Zhang, Y., Yu, R. & Zhu, J. Displacement separation analysis from atomic-resolution images. Ultramicroscopy 232, 113404 (2022).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We thank W. Miao for fruitful discussions. L.-Q.C. acknowledges the generous support by the Hamer Foundation through a Hamer Professorship at Penn State. Y.-H.L. was supported by the National Key Research Program of China (grant no. 2021YFB3800601). Y.-H.L., C.-W.N. and J.Z. were supported by the Basic Science Center Project of the National Natural Science Foundation of China (NSFC; grant no. 51788104). J.Z. was supported by the NSFC (grant no. 11834009), Applied Basic Research Major Programme of Guangdong Province, China (grant no. 2021B0301030003) and Jihua Laboratory (project no. X210141TL210). Q.Z. and L.G. were supported by the NSFC (grant nos 52025025 and 52072400). Z.S. was supported by the NSFC (no. 52002300) and the Major Research Plan of the NSFC (grant no. 92066103). H.H. was supported by the NSFC (grant no. 51972028). J.H. was supported by the NSFC (grant no. 11934007).

Author information

Authors and Affiliations

Authors

Contributions

Y.-H.L. and B.Y. conceived this study. B.Y. performed this study with the supervision of Y.-H.L. and C.-W.N.; B.Y., S.L. and Y.L. fabricated the samples and carried out the electrical measurements. J.Z., Y.Z., W.S., F.M., Q.Z., L.G., Y.Y. and J.H. conducted the microstructural STEM research. Z.S., H.H. and L.-Q.C. performed the phase-field simulations. B.Y., Y.Z., H.P., S.Z., L.-Q.C., J.Z., C.-W.N. and Y.-H.L. wrote the manuscript. All authors discussed the results and revised the manuscript.

Corresponding authors

Correspondence to Jing Zhu, Ce-Wen Nan or Yuan-Hua Lin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Ben Breitung, Brahim Dkhil and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 HAADF, NBD, FFT images and schematic lattice structure of the film with x = 0.4.

a, Along the [112] zone axes. b, Along the [110] zone axes.

Source data

Extended Data Fig. 2 Room-temperature polarization and dielectric properties for all films.

a, Comparison of the Pm/Pr and Uloss of these films. b, Frequency dependent dielectric permittivity and loss tangent.

Source data

Extended Data Fig. 3 Bipolar P-E loops of the films at electric fields up to their breakdown field at 10 kHz.

a, x = 0.0. b, x = 0.1. c, x = 0.2. d, x = 0.3. e, x = 0.4. f, x = 0.5.

Source data

Extended Data Fig. 4 Energy storage performances for the films of x = 0.1 and 0.3.

a, Discharged energy storage density and b, energy efficiency as functions of the electric field.

Extended Data Fig. 5 Determining the center of atomic column with 2D gaussian fitting.

a, Schematic graph shows the process of determining the center of atomic column, which is not influenced by the size and contrast of atomic column. b, The raw and reference image used for measuring atomic displacement in this work. The green parallelogram represents the area exerted for determining center of atomic column and corresponding fitting results are shown below.

Extended Data Fig. 6 Displacement separated analysis.

a, The HAADF images acquired along the [110] zone axis of the x = 0.4 film. The real atom position is determined by fitting the intensity peak of the atom. b, FFT result shows the frequency information in the reciprocal space. The frequency containing non-distorted lattice is marked by a green mask, which is used for subsequent iFFT operation. c, The iFFT result of the frequency selected by masks shown in (b). Gaussian fitting is used again to determine the non-distorted atomic position. Ion displacement is calculated as the difference between the ion positions in the real and non-distorted lattices.

Supplementary information

Supplementary Information

Supplementary Figs. 1–11, Table 1, Methods and references.

Source data

Source Data Fig. 1

X-ray diffraction source data.

Source Data Fig. 2

Dielectric, leakage and breakdown source data.

Source Data Fig. 3

Grain size and amorphous-like phase source data.

Source Data Fig. 4

Energy storage source data.

Source Data Extended Data Fig. 1

Polarization and dielectric property source data.

Source Data Extended Data Fig. 2

Bipolar PE loop source data.

Source Data Extended Data Fig. 3

Energy storage source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yang, B., Zhang, Y., Pan, H. et al. High-entropy enhanced capacitive energy storage. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-022-01274-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing