Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Electrotunable friction with ionic liquid lubricants

Abstract

Room-temperature ionic liquids and their mixtures with organic solvents as lubricants open a route to control lubricity at the nanoscale via electrical polarization of the sliding surfaces. Electronanotribology is an emerging field that has a potential to realize in situ control of friction—that is, turning the friction on and off on demand. However, fulfilling its promise needs more research. Here we provide an overview of this emerging research area, from its birth to the current state, reviewing the main achievements in non-equilibrium molecular dynamics simulations and experiments using atomic force microscopes and surface force apparatus. We also present a discussion of the challenges that need to be solved for future applications of electrotunable friction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Experimental and simulation approaches to study electrotunable friction with lubricating nanoscale RTIL films.
Fig. 2: Effect of surface polarization on ionic liquid film structure.
Fig. 3: Mechanism of electrotunable friction in nanoscale RTIL films.
Fig. 4: Effect of film composition on friction.
Fig. 5: From fundamentals of electrotunable friction to applications.

Similar content being viewed by others

References

  1. Holmberg, K. & Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017).

    Article  CAS  Google Scholar 

  2. Jost, P. Lubrication (Tribology)—A Report on the Present Position and Industry’s Needs (Department of Education and Science, HM Stationery Office, 1966)

  3. Amontons, G. De la resistance cause’e dans les machines (About resistance and force in machines). Mem. Aced. R. A. 257–282 (1699).

  4. Hutchings, I. M. Leonardo da Vinci’s Studies of Friction. Wear 360, 51–66 (2016).

    Article  CAS  Google Scholar 

  5. Coulomb, C. A. Sur une application des regles de maximis & minimis a quelques problemes de statique, relatifs a L’architecture. Mem. Math. Phys. 7, 343–382 (1773).

    Google Scholar 

  6. Chaston, J. C. Wear resistance of gold alloys for coinage. Gold Bull. 7, 108–112 (1974).

    Article  CAS  Google Scholar 

  7. Bowden, F. P. & Tabor, D. The Friction and Lubrication of Solids (Oxford Univ. Press, 1950).

    Google Scholar 

  8. Urbakh, M., Klafter, J., Gourdon, D. & Israelachvili, J. The nonlinear nature of friction. Nature 430, 525–528 (2004).

    Article  CAS  Google Scholar 

  9. Szlufarska, I., Chandross, M. & Carpick, R. W. Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008).

    Article  CAS  Google Scholar 

  10. Vanossi, A., Manini, N., Urbakh, M., Zaperri, S. & Tosatti, E. Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 529–551 (2013).

    Article  CAS  Google Scholar 

  11. Rapoport, L., Fleischer, N. & Tenne, R. Fullerene-like WS2 nanoparticles: superior lubricants for harsh conditions. Adv. Mater. 15, 651–655 (2003).

    Article  CAS  Google Scholar 

  12. Palacio, M. & Bhushan, B. A review of ionic liquids for green molecular lubrication in nanotechnology. Tribol. Lett. 40, 247–268 (2010).

    Article  CAS  Google Scholar 

  13. Raviv, U. & Klein, J. Fluidity of bound hydration layers. Science 297, 1540–1543 (2002).

    Article  CAS  Google Scholar 

  14. Vanossi, A., Bechinger, C. & Urbakh, M. Structural lubricity in soft and hard matter systems. Nat. Commun. 11, 4657 (2020).

  15. Rozman, M. G., Urbakh, M. & Klafter, J. Controlling chaotic frictional forces. Phys. Rev. E 57, 7340–7343 (1998).

    Article  CAS  Google Scholar 

  16. Socoliuc, A. et al. Atomic-scale control of friction by actuation of nanometersized contacts. Science 313, 207–210 (2006).

    Article  CAS  Google Scholar 

  17. Sasak, M., Xu, Y. & Goto, M. Control of friction force by light observed by friction force microscopy in a vacuum. Appl. Phys. Express 10, 015201 (2017).

    Article  Google Scholar 

  18. Spikes, H. A. Triboelectrochemistry: influence of applied electrical potentials on friction and wear of lubricated contacts. Tribol. Lett. 68, 90 (2020).

    Article  CAS  Google Scholar 

  19. Krim, J. Controlling friction with external electric or magnetic fields: 25 examples. Front. Mech. Eng. 5, 22 (2019).

    Article  Google Scholar 

  20. Hausen, F., Gosvami, N. N. & Bennewitz, R. Anion adsorption and atomic friction on Au(111). Electrochim. Acta 56, 10694–10700 (2011).

    Article  CAS  Google Scholar 

  21. Sweeney, J. et al. Control of nanoscale friction on gold in ionic liquid by a potential dependent ionic lubricant layer. Phys. Rev. Lett. 109, 155502 (2012).

    Article  CAS  Google Scholar 

  22. Li, H., Wood, R. J., Rutland, M. W. & Atkin, R. An ionic liquid lubricant enables superlubricity to be ‘switched on’ in situ using an electrical potential. Chem. Commun. 50, 4368–4370 (2014).

    Article  CAS  Google Scholar 

  23. Strelcov, E. et al. Nanoscale lubrication of ionic surfaces controlled via a strong electric field. Sci. Rep. 5, 8049 (2015).

    Article  CAS  Google Scholar 

  24. Krämer, G., Hausen, F. & Bennewitz, R. Dynamic shear force microscopy of confined liquids at a gold electrode. Faraday Discuss. 199, 299–309 (2017).

    Article  CAS  Google Scholar 

  25. Israelachvili, J. Intermolecular and Surface Forces 3rd edn (Academic, 2011).

    Google Scholar 

  26. Perkin, S., Albrecht, T. & Klein, J. Layering and shear properties of an ionic liquid, 1-ethyl-3-methylimidazolium ethylsulfate, confined to nano-films between mica surfaces. Phys. Chem. Chem. Phys. 12, 1243–1247 (2010).

    Article  CAS  Google Scholar 

  27. Fre´chette, J. & Vanderlick, T. K. Double layer forces over large potential ranges as measured in an electrochemical surface forces apparatus. Langmuir 17, 7620–7627 (2001).

    Article  CAS  Google Scholar 

  28. Valtiner, M. et al. The electrochemical surface forces apparatus: the effect of surface roughness, electrostatic surface potentials, and anodic oxide growth on interaction forces, and friction between dissimilar surfaces in aqueous solutions. Langmuir 28, 13080–13093 (2012).

    Article  CAS  Google Scholar 

  29. Britton, J. et al. A graphene surface force balance. Langmuir 30, 11485–11492 (2014).

    Article  CAS  Google Scholar 

  30. Tivony, R. & Klein, J. Modifying surface forces through control of surface potentials. Faraday Discuss. 199, 261–277 (2017).

    Article  CAS  Google Scholar 

  31. Perez Martinez, C. S. & Perkin, S. Surface forces generated by the action of electric fields across liquid films. Soft Matter 15, 4255–4265 (2019).

    Article  CAS  Google Scholar 

  32. Tivony, R., Yaakov, D. B., Silbert, G. & Klein, J. Direct observation of confinement-induced charge inversion at a metal surface. Langmuir 31, 12845–12849 (2015).

    Article  CAS  Google Scholar 

  33. Hallett, J. P. & Welton, T. Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem. Rev. 111, 3508–3576 (2011).

    Article  CAS  Google Scholar 

  34. Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    Article  CAS  Google Scholar 

  35. Hayes, R., Warr, G. G. & Atkin, R. Structure and nanostructure in ionic liquids. Chem. Rev. 115, 6357–6426 (2015).

    Article  CAS  Google Scholar 

  36. Miami, I., Inada, T., Sasaki, R. & Nanao, H. Tribo-chemistry of phosphonium-derived ionic liquids. Tribol. Lett. 40, 225–235 (2010).

    Article  CAS  Google Scholar 

  37. Wang, H., Lu, Q., Ye, C., Liu, W. & Cui, Z. Friction and wear behaviors of ionic liquid of alkylimidazolium hexaflurophophates as lubricants for steel/steel contact. Wear 256, 44–48 (2004).

    Article  CAS  Google Scholar 

  38. Somers, A. E., Howlett, P. C., MacFarlane, D. R. & Forsyth, M. S. Review of ionic liquid lubricants. Lubricants 1, 3–21 (2013).

    Article  Google Scholar 

  39. Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article  CAS  Google Scholar 

  40. Smith, A. M., Lovelock, K. R. J., Gosvami, N. N., Welton, T. & Perkin, S. Quantized friction across ionic liquid thin films. Phys. Chem. Chem. Phys. 15, 15317–15320 (2013).

    Article  CAS  Google Scholar 

  41. Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nat. Mater. 16, 634–639 (2017).

    Article  CAS  Google Scholar 

  42. Zhang, Y., Rutland, M. W., Luo, J., Atkin, R. & Li, H. Potential-dependent superlubricity of ionic liquids on a graphite surface. J. Phys. Chem. C 125, 3940–3947 (2021).

    Article  CAS  Google Scholar 

  43. Hoth, J., Hausen, F., Müser, M. H. & Bennewitz, R. Force microscopy of layering and friction in an ionic liquid. J. Phys. Condens. Matter 26, 284110 (2014).

    Article  CAS  Google Scholar 

  44. Jurado, L. A. et al. Irreversible structural change of a dry ionic liquid under nanoconfinement. Phys. Chem. Chem. Phys. 17, 13613–13624 (2015).

    Article  CAS  Google Scholar 

  45. Black, J. M. et al. Fundamental aspects of electric double layer force-distance measurements at liquid-solid interfaces using atomic force microscopy. Sci. Rep. 6, 32389 (2016).

    Article  CAS  Google Scholar 

  46. Ebeling, D., Bradler, S., Roling, B. & Schirmeisen, A. 3‑dimensional structure of a prototypical ionic liquid−solid interface: ionic crystal-like behavior induced by molecule−substrate interactions. J. Phys. Chem. C 120, 11947–11955 (2016).

    Article  CAS  Google Scholar 

  47. Goodwin, Z. A. H., Eikerling, M., Loewen, H. & Kornyshev, A. A. Theory of microstructured polymer electrolyte artificial muscles. Smart Mater. Struct. 27, 075056 (2018).

    Article  Google Scholar 

  48. Kornyshev, A. A. et al. Ultra-low voltage electrowetting. J. Phys. Chem. C 114, 14885–14890 (2010).

    Article  CAS  Google Scholar 

  49. Cai, M., Yu, Q., Liu, W. & Zhou, F. Ionic liquid lubricants: when chemistry meets tribology. Chem. Soc. Rev. 49, 7753–7818 (2020).

    Article  CAS  Google Scholar 

  50. Drummond, C. Electric-field-induced friction reduction and control. Phys. Rev. Lett. 109, 154302 (2012).

    Article  CAS  Google Scholar 

  51. Tivony, R., Safran, S., Pincus, P., Silbert, G. & Klein, J. Charging dynamics of an individual nanopore. Nat. Commun. 9, 4203 (2018).

    Article  CAS  Google Scholar 

  52. van Engers, C. D., Balabajew, M., Southam, A. & Perkin, S. A 3-mirror surface force balance for the investigation of fluids confined to nanoscale films between two ultra-smooth polarizable electrodes. Rev. Sci. Instrum. 89, 123901 (2018).

    Article  CAS  Google Scholar 

  53. Black, J. M. et al. Bias-dependent molecular-level structure of electrical double layer in ionic liquid on graphite. Nano Lett. 13, 5954–596 (2013).

    Article  CAS  Google Scholar 

  54. Smith, A. M., Parkes, M. A. & Perkin, S. Molecular friction mechanisms across nanofilms of a bilayer-forming ionic liquid. J. Phys. Chem. Lett. 5, 4032–4037 (2014).

    Article  CAS  Google Scholar 

  55. Espinosa-Marzal, R. M., Arcifa, A., Rossi, A. & Spencer, N. D. Microslips to ‘avalanches’ in confined, molecular layers of ionic liquids. J. Phys. Chem. Lett. 5, 179–184 (2014).

    Article  CAS  Google Scholar 

  56. Perez-Martinez, C. & Perkin, S. Interfacial structure and boundary lubrication of a dicationic ionic liquid. Langmuir 35, 15444–15450 (2019).

    Article  CAS  Google Scholar 

  57. Fajardo, O. Y., Bresme, F., Kornyshev, A. A. & Urbakh, M. Water in ionic liquid lubricants: friend and foe. ACS Nano 11, 6825–6831 (2017).

    Article  CAS  Google Scholar 

  58. Capozza, R., Vanossi, A., Benassi, A. & Tosatti, E. Squeezout phenomena and boundary layer formation of a model ionic liquid under confinement and charging. J. Chem. Phys. 142, 064707 (2015).

    Article  CAS  Google Scholar 

  59. Di Lecce, S., Kornyshev, A. A., Urbakh, M. & Bresme, F. Electrotunable lubrication with ionic liquids: the effects of cation chain length and substrate polarity. ACS Appl. Mater. Interf. 12, 4105–4113 (2020).

    Article  CAS  Google Scholar 

  60. Fajardo, O. Y., Bresme, F., Kornyshev, A. A. & Urbakh, M. Electrotunable lubricity with ionic liquid nanoscale films. Sci. Rep. 5, 7698 (2015).

    Article  CAS  Google Scholar 

  61. Canova, F. F., Matsubara, H., Mizukami, M., Kurihara, K. & Shluger, A. L. Shear dynamics of nanoconfined ionic liquids. Phys. Chem. Chem. Phys. 16, 8247–8256 (2014).

    Article  Google Scholar 

  62. Merlet, C. et al. Simulating supercapacitors: can we model electrodes as constant charge surfaces. J. Phys. Chem. Lett. 4, 264–268 (2013).

    Article  CAS  Google Scholar 

  63. Fajardo, O. Y., Bresme, F., Kornyshev, A. A. & Urbakh, M. Electrotunable friction with ionic liquid lubricants: how important is the molecular structure of the ions? J. Phys. Chem. Lett. 6, 3998–4004 (2015).

    Article  CAS  Google Scholar 

  64. Pivnic, K., Bresme, F., Kornyshev, A. A. & Urbakh, M. Structural forces in mixtures of ionic liquids with organic solvents. Langmuir 35, 15410–15420 (2019).

    Article  CAS  Google Scholar 

  65. Yan, Z. et al. Two dimensional ordering of ionic liquids confined by layered silicate plates via molecular dynamics simulation. J. Phys. Chem. C 119, 19244–19252 (2015).

    Article  CAS  Google Scholar 

  66. Begic, S., Jonsson, E., Chen, F. & Forsyth, M. Molecular dynamics simulations of pyrrolidinium and imidazoium ionic liquids at graphene interfaces. Phys. Chem. Chem. Phys. 19, 30010 (2017).

    Article  CAS  Google Scholar 

  67. Dašić, M., Stankovic, I. & Gkagkas, K. Molecular dynamics investigation of the influence of the shape of the cation on the structure and lubrication properties of ionic liquids. Phys. Chem. Chem. Phys. 21, 4375–4386 (2019).

  68. Capozza, R., Benassi, A., Vanossi, A. & Tosatti, E. Electrical charging effects on the sliding friction of a model nano-confined ionic liquid. J. Chem. Phys. 143, 144703 (2015).

    Article  CAS  Google Scholar 

  69. Kramer, G. & Bennewitz, R. Molecular rheology of a nanometer-confined ionic liquid. J. Phys. Chem. C 123, 28284–28290 (2019).

    Article  CAS  Google Scholar 

  70. Zhou, H. et al. Nanoscale perturbations of room temperature ionic liquid structure at charged and uncharged interfaces. ACS Nano 6, 9818–9827 (2012).

    Article  CAS  Google Scholar 

  71. Velpula, G. et al. Graphene meets ionic liquids: Fermi level engineering via electrostatic forces. ACS Nano 13, 3512–3521 (2019).

    Article  CAS  Google Scholar 

  72. Zhang, F., Fang, C. & Qiao, R. Effects of water on mica−ionic liquid interfaces. J. Phys. Chem. C 122, 9035–9045 (2018).

    Article  CAS  Google Scholar 

  73. Di Lecce, S., Kornyshev, A. A., Urbakh, M. & Bresme, F. Lateral ordering in nanoscale ionic liquid films between charged surfaces enhances lubricity. ACS Nano 14, 13256–13267 (2020).

    Article  CAS  Google Scholar 

  74. David, A., Fajardo, O. Y., Kornyshev, A. A., Urbakh, M. & Bresme, F. Electrotunable lubricity with ionic liquids: the influence of nanoscale roughness. Faraday Discuss. 199, 279 (2017).

    Article  CAS  Google Scholar 

  75. Richter, Ł. et al. Ions in an AC electric field: strong long-range repulsion between oppositely charged surfaces. Phys. Rev. Lett. 125, 056001 (2020).

    Article  CAS  Google Scholar 

  76. Perez-Martinez, C. S., Groves, T. & Perkin, S. Controlling adhesion using AC electric fields across fluid films. J. Phys. Condens. Matter 33, 31LT02 (2021).

    Article  CAS  Google Scholar 

  77. Balabajew, M., van Engers, C. D. & Perkin, S. Contact-free calibration of an asymmetric multi-layer interferometer for the surface force balance. Rev. Sci. Instrum. 88, 123903 (2017).

    Article  CAS  Google Scholar 

  78. Glavatskhi, S. & Hoglund, E. Tribotronics-Towards active tribology. Tribol. Int. 41, 934–939 (2008).

    Article  Google Scholar 

  79. Pam, S. & Zhang, Z. Fundamental theories and basic principles of triboelectric effect: a review. Friction 7, 2–17 (2019).

  80. Coles, S. W., Smith, A. M., Fedorov, M. V., Hausen, F. & Perkin, S. Interfacial structure and structural forces in mixtures of ionic liquid with a polar solvent. Faraday Discuss. 206, 427 (2018).

    Article  CAS  Google Scholar 

  81. Cooper, P. K., Li, H., Rutland, M. W., Webber, G. B. & Atkin, R. Tribotronic control of friction in oil-based lubricants with ionic liquid additives. Phys. Chem. Chem. Phys. 18, 23657 (2016).

    Article  CAS  Google Scholar 

  82. Espinoza-Marzal, R. M., Arcifa, A., Rossi, A. & Spencer, N. D. Ionic liquids confined in hydrophobic nanocontacts: structure and lubricity in the presence of water. J. Phys. Chem. C 118, 6491–6503 (2014).

    Article  CAS  Google Scholar 

  83. Watanabe, S. et al. Interfacial structuring of non-halogenated imidazolium ionic liquids at charged surfaces: effect of alkyl chain length. Phys. Chem. Chem. Phys. 22, 8450–8460 (2020).

    Article  CAS  Google Scholar 

  84. Rollins, J. B., Fitchett, B. D. & Conboy, J. C. Structure and orientation of the imidazolium cation at the room-temperature ionic liquid/SiO2 interface measured by sum-frequency vibrational spectroscopy. J. Chem. Phys. B 111, 4990–4999 (2007).

    Article  CAS  Google Scholar 

  85. Bresme, F., Lervik, A. & Armstrong, J. in Experimental Thermodynamics Volume X: Non-Equilibrium Thermodynamics with Applications (eds Bedeaux, D. et al.) 105 (IUPAC, 2016).

  86. Roy, D. & Maroncelli, M. An improved four-site ionic liquid model. J. Phys. Chem. B 114, 12629–12631 (2010).

    Article  CAS  Google Scholar 

  87. Fajardo, O. Y., Di Lecce, S. & Bresme, F. Molecular dynamics simulation of imidazolium CnMIM-BF4 ionic liquids using a coarse grained force-field. Phys. Chem. Chem. Phys. 22, 1682–1692 (2020).

    Article  CAS  Google Scholar 

  88. Lopes, J. N. C., Deschamps, J. H. & Pádua, A. A. Modeling ionic liquids using a systematic all-atom force field. J. Phys. Chem. B 108, 2038–2047 (2004).

    Article  CAS  Google Scholar 

  89. Yan, T., Burnham, C. J., Del Popolo, M. G. & Voth, G. A. Molecular dynamics simulation of ionic liquids: the effect of electronic polarizability. J. Phys. Chem. B 108, 12 (2004).

    Google Scholar 

  90. Nalam, P. C., Sheehan, A., Han, M. & Espinosa-Marzal, R. M. Effects of nanoscale roughness on the lubricious behavior of an ionic liquid. Adv. Mater. Interf. 7, 2000314 (2020).

    Article  Google Scholar 

  91. Pivnic, K., Bresme, F., Kornyshev, A. A. & Urbakh, M. Electrotunable friction in diluted room temperature ionic liquids: implications for nanotribology. ACS Appl. Nano. Mat. 3, 10708–10719 (2020).

    Article  CAS  Google Scholar 

  92. Seidl, C., Hormann, J. L. & Pastewka, L. Molecular Simulations of electrotunable lubrication: viscosity and wall slip in aqueous electrolytes. Tribol. Lett. 69, 22 (2021).

    Article  CAS  Google Scholar 

  93. Ntim, S. & Sulpizi, M. Role of image charges in ionic liquid confined between metallic interfaces. Phys. Chem. Chem. Phys. 22, 10786–10791 (2020).

    Article  CAS  Google Scholar 

  94. Liu, X. Z. et al. Dynamics of atomic stick-slip friction examined with atomic force microscopy and atomistic simulations at overlapping speeds. Rev. Lett. 114, 146102 (2015).

    Article  CAS  Google Scholar 

  95. Ta, H. T. T. et al. Computational tribochemistry: a review from classical and quantum mechanical studies. J. Phys. Chem. C 125, 16875 (2021).

    Article  CAS  Google Scholar 

  96. Feng, G., Jiang, X., Qiao, R. & Kornyshev, A. A. Water in ionic liquids at electrified interfaces: the anatomy of electrosorption. ACS Nano 8, 11685–11694 (2014).

    Article  CAS  Google Scholar 

  97. Bi, S. et al. Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nat. Commun. 9, 5222 (2018).

    Article  CAS  Google Scholar 

  98. McEldrew, M., Goodwin, Z. A. H., Kornyshev, A. A. & Bazant, M. Z. Theory of the double layer in water-in-salt electrolytes. J. Phys. Chem. Lett. 9, 5840–5846 (2018).

    Article  CAS  Google Scholar 

  99. Lertola, A. C., Wang, B. & Li, L. Understanding the friction of nanometer-thick fluorinated ionic liquids. Ind. Eng. Chem. Res. 57, 11681–11685 (2018).

    Article  CAS  Google Scholar 

  100. Wang, J., Tian, Y., Zhao, Y. & Zhuo, K. A volumetric and viscosity study for the mixtures of 1-n-butyl-3-methylimidazolium tetrafluoroborate ionic liquid with acetonitrile, dichloromethane, 2-butanone and N, N-dimethylformamide. Green Chem. 5, 618–622 (2003).

    Article  CAS  Google Scholar 

  101. Li, S. et al. Enhanced performance of dicationic ionic liquid electrolytes by organic solvents. J. Phys. Condens. Matter 26, 284105 (2014).

    Article  CAS  Google Scholar 

  102. Yang, X., Meng, Y. & Tian, Y. Effect of imidazolium ionic liquid additives on lubrication performance of propylene carbonate under different electrical potentials. Tribol. Lett. 56, 161–169 (2014).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

F.B, A.A.K. and M.U. thank the Leverhulme Trust for the award of research grant number RPG-2016-223. M.U. acknowledges the financial support of the Israel Science Foundation under grant number 1141/18 and the binational programme of the National Science Foundation of China and Israel Science Foundation under grant number 3191/19. S.P. acknowledges support from the European Research Council under grant number 676861. We also thank R. Bennewitz for sharing high-resolution versions Figs. 2a and 3b.

Author information

Authors and Affiliations

Authors

Contributions

F.B., A.A.K., S.P. and M.U. conceived the idea of writing this Review, devised its general structure, designed the figures and contributed to the writing.

Corresponding authors

Correspondence to Fernando Bresme, Alexei A. Kornyshev, Susan Perkin or Michael Urbakh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Rob Atkin, Ali Erdemir and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bresme, F., Kornyshev, A.A., Perkin, S. et al. Electrotunable friction with ionic liquid lubricants. Nat. Mater. 21, 848–858 (2022). https://doi.org/10.1038/s41563-022-01273-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01273-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing