Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Enabling ultra-low-voltage switching in BaTiO3

Abstract

Single crystals of BaTiO3 exhibit small switching fields and energies, but thin-film performance is considerably worse, thus precluding their use in next-generation devices. Here, we demonstrate high-quality BaTiO3 thin films with nearly bulk-like properties. Thickness scaling provides access to the coercive voltages (<100 mV) and fields (<10 kV cm−1) required for future applications and results in a switching energy of <2 J cm−3 (corresponding to <2 aJ per bit in a 10 × 10 × 10 nm3 device). While reduction in film thickness reduces coercive voltage, it does so at the expense of remanent polarization. Depolarization fields impact polar state stability in thicker films but fortunately suppress the coercive field, thus driving a deviation from Janovec–Kay–Dunn scaling and enabling a constant coercive field for films <150 nm in thickness. Switching studies reveal fast speeds (switching times of ~2 ns for 25-nm-thick films with 5-µm-diameter capacitors) and a pathway to subnanosecond switching. Finally, integration of BaTiO3 thin films onto silicon substrates is shown. We also discuss what remains to be demonstrated to enable the use of these materials for next-generation devices.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Summary of ferroelectric and structural properties of BaTiO3 thin films.
Fig. 2: Size scaling of BaTiO3 thin films grown at 60 mTorr.
Fig. 3: Switching-dynamics studies on BaTiO3 thin films grown at 60 mTorr.
Fig. 4: Integration of BaTiO3 thin films onto SrTiO3/Si substrates.

Data availability

All data supporting the findings of this study are available within the article and its Supplementary Information. Additional data are available from the corresponding author upon request.

References

  1. Moore, G. E. Cramming more components onto integrated circuits. Electronics 38, 114–117 (1965).

    Google Scholar 

  2. Meindl, J. D., Chen, Q. & Davis, J. A. Limits on silicon nanoelectronics for terascale integration. Science 293, 2044–2049 (2001).

    CAS  Article  Google Scholar 

  3. Dennard, R. H. et al. Design of ion-implanted MOSFET’s with very small physical dimensions. IEEE J. Solid-State Circuits 9, 256–268 (1974).

    Article  Google Scholar 

  4. Nikonov, D. E. & Young, I. A. Benchmarking of beyond-CMOS exploratory devices for logic integrated circuits. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 3–11 (2015).

    Article  Google Scholar 

  5. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338–343 (2018).

    CAS  Article  Google Scholar 

  6. Mikolajick, T., Schroeder, U. & Slesazeck, S. The past, the present, and the future of ferroelectric memories. IEEE Trans. Electron Devices 67, 1434–1443 (2020).

    CAS  Article  Google Scholar 

  7. Khan, A. I., Keshavarzi, A. & Datta, S. The future of ferroelectric field-effect transistor technology. Nat. Electron. 3, 588–597 (2020).

    Article  Google Scholar 

  8. Salahuddin, S. & Datta, S. Use of negative capacitance to provide voltage amplification for low power nanoscale devices. Nano Lett. 8, 405–410 (2008).

    CAS  Article  Google Scholar 

  9. Íñiguez, J., Zubko, P., Luk’yanchuk, I. & Cano, A. Ferroelectric negative capacitance. Nat. Rev. Mater. 4, 243–256 (2019).

    Article  Google Scholar 

  10. Choi, K. J. et al. Enhancement of ferroelectricity in strained BaTiO3 thin films. Science 306, 1005–1009 (2004).

    CAS  Article  Google Scholar 

  11. Haertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Ceram. Soc. 82, 797–818 (1999).

    CAS  Article  Google Scholar 

  12. Yasumoto, T., Yanase, N., Abe, K. & Kawakubo, T. Epitaxial growth of BaTiO3 thin films by high gas pressure sputtering. Jpn. J. Appl. Phys. 39, 5369–5373 (2000).

    CAS  Article  Google Scholar 

  13. Zhang, W. et al. Space-charge dominated epitaxial BaTiO3 heterostructures. Acta Mater. 85, 207–215 (2015).

    CAS  Article  Google Scholar 

  14. Damodaran, A. R., Breckenfeld, E., Chen, Z., Lee, S. & Martin, L. W. Enhancement of ferroelectric Curie temperature in BaTiO3 films via strain‐induced defect dipole alignment. Adv. Mater. 26, 6341–6347 (2014).

    CAS  Article  Google Scholar 

  15. Peng, W. et al. Constructing polymorphic nanodomains in BaTiO3 films via epitaxial symmetry engineering. Adv. Funct. Mater. 30, 1910569 (2020).

    CAS  Article  Google Scholar 

  16. Bhatia, B. et al. High power density pyroelectric energy conversion in nanometer-thick BaTiO3 films. Nanoscale Microscale Thermophys. Eng. 20, 137–146 (2016).

    CAS  Article  Google Scholar 

  17. Dubourdieu, C. et al. Switching of ferroelectric polarization in epitaxial BaTiO3 films on silicon without a conducting bottom electrode. Nat. Nanotechnol. 8, 748–754 (2013).

    CAS  Article  Google Scholar 

  18. Iijima, K., Terashima, T., Yamamoto, K., Hirata, K. & Bando, Y. Preparation of ferroelectric BaTiO3 thin films by activated reactive evaporation. Appl. Phys. Lett. 56, 527–529 (1990).

    CAS  Article  Google Scholar 

  19. Li, A. et al. Fabrication and electrical properties of sol-gel derived BaTiO3 films with metallic LaNiO3 electrode. Appl. Phys. Lett. 70, 1616–1618 (1997).

    CAS  Article  Google Scholar 

  20. Zhou, Z., Lin, Y., Tang, H. & Sodano, H. A. Hydrothermal growth of highly textured BaTiO3 films composed of nanowires. Nanotechnology 24, 095602 (2013).

    Article  CAS  Google Scholar 

  21. Lee, E. et al. Preparation and properties of ferroelectric BaTiO3 thin films produced by the polymeric precursor method. J. Mater. Sci. Lett. 19, 1457–1459 (2000).

    CAS  Article  Google Scholar 

  22. Mazet, L., Yang, S. M., Kalinin, S. V., Schamm-Chardon, S. & Dubourdieu, C. A review of molecular beam epitaxy of ferroelectric BaTiO3 films on Si, Ge and GaAs substrates and their applications. Sci. Technol. Adv. Mater. 16, 036005 (2015).

    Article  CAS  Google Scholar 

  23. Abel, S. et al. Large Pockels effect in micro-and nanostructured barium titanate integrated on silicon. Nat. Mater. 18, 42–47 (2019).

    CAS  Article  Google Scholar 

  24. Lyu, J. et al. Control of polar orientation and lattice strain in epitaxial BaTiO3 films on silicon. ACS Appl. Mater. Interfaces 10, 25529–25535 (2018).

    CAS  Article  Google Scholar 

  25. Scigaj, M. et al. Ultra-flat BaTiO3 epitaxial films on Si (001) with large out-of-plane polarization. Appl. Phys. Lett. 102, 112905 (2013).

    Article  CAS  Google Scholar 

  26. Drezner, Y. & Berger, S. Nanoferroelectric domains in ultrathin BaTiO3 films. J. Appl. Phys. 94, 6774–6778 (2003).

    CAS  Article  Google Scholar 

  27. Chang, L., McMillen, M., Morrison, F., Scott, J. & Gregg, J. Size effects on thin film ferroelectrics: experiments on isolated single crystal sheets. Appl. Phys. Lett. 93, 132904 (2008).

    Article  CAS  Google Scholar 

  28. Chang, L., McMillen, M. & Gregg, J. The influence of point defects and inhomogeneous strain on the functional behavior of thin film ferroelectrics. Appl. Phys. Lett. 94, 212905 (2009).

    Article  CAS  Google Scholar 

  29. Dasgupta, A. et al. Nonstoichiometry, structure, and properties of Ba1−xTiOy thin films. J. Mater. Chem. C Mater. 6, 10751–10759 (2018).

    CAS  Article  Google Scholar 

  30. Saremi, S. et al. Local control of defects and switching properties in ferroelectric thin films. Phys. Rev. Mater. 2, 084414 (2018).

    CAS  Article  Google Scholar 

  31. Saremi, S. et al. Enhanced electrical resistivity and properties via ion bombardment of ferroelectric thin films. Adv. Mater. 28, 10750–10756 (2016).

    CAS  Article  Google Scholar 

  32. Catalan, G., Noheda, B., McAneney, J., Sinnamon, L. & Gregg, J. Strain gradients in epitaxial ferroelectrics. Phys. Rev. B 72, 020102 (2005).

    Article  CAS  Google Scholar 

  33. Breckenfeld, E. et al. Effect of growth induced (non)stoichiometry on interfacial conductance in LaAlO3/SrTiO3. Phys. Rev. Lett. 110, 196804 (2013).

    CAS  Article  Google Scholar 

  34. Karthik, J., Damodaran, A. R. & Martin, L. W. Epitaxial ferroelectric heterostructures fabricated by selective area epitaxy of SrRuO3 using an MgO mask. Adv. Mater. 24, 1610–1615 (2012).

    CAS  Article  Google Scholar 

  35. Weber, D., Vőfély, R., Chen, Y., Mourzina, Y. & Poppe, U. Variable resistor made by repeated steps of epitaxial deposition and lithographic structuring of oxide layers by using wet chemical etchants. Thin Solid Films 533, 43–47 (2013).

    CAS  Article  Google Scholar 

  36. Kay, H. & Dunn, J. Thickness dependence of the nucleation field of triglycine sulphate. Philos. Mag. 7, 2027–2034 (1962).

    CAS  Article  Google Scholar 

  37. Xu, R. et al. Reducing coercive-field scaling in ferroelectric thin films via orientation control. ACS Nano 12, 4736–4743 (2018).

    CAS  Article  Google Scholar 

  38. Jo, J., Kim, Y., Noh, T., Yoon, J.-G. & Song, T. Coercive fields in ultrathin BaTiO3 capacitors. Appl. Phys. Lett. 89, 232909 (2006).

    Article  CAS  Google Scholar 

  39. Junquera, J. & Ghosez, P. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422, 506–509 (2003).

    CAS  Article  Google Scholar 

  40. Black, C. T. & Welser, J. J. Electric-field penetration into metals: consequences for high-dielectric-constant capacitors. IEEE Trans. Electron Devices 46, 776–780 (1999).

    CAS  Article  Google Scholar 

  41. Kim, D. et al. Polarization relaxation induced by a depolarization field in ultrathin ferroelectric BaTiO3 capacitors. Phys. Rev. Lett. 95, 237602 (2005).

    CAS  Article  Google Scholar 

  42. Dawber, M., Chandra, P., Littlewood, P. & Scott, J. Depolarization corrections to the coercive field in thin-film ferroelectrics. J. Phys. Condens. Matter 15, L393–L398 (2003).

    CAS  Article  Google Scholar 

  43. Fong, D. D. et al. Ferroelectricity in ultrathin perovskite films. Science 304, 1650–1653 (2004).

    CAS  Article  Google Scholar 

  44. Lee, S. R. et al. First observation of ferroelectricity in ~1 nm ultrathin semiconducting BaTiO3 films. Nano Lett. 19, 2243–2250 (2019).

    CAS  Article  Google Scholar 

  45. Pesquera, D. et al. Beyond substrates: strain engineering of ferroelectric membranes. Adv. Mater. 32, 2003780 (2020).

    CAS  Article  Google Scholar 

  46. Morimoto, T. et al. Ferroelectric properties of Pb(Zi, Ti)O3 capacitor with thin SrRuO3 films within both electrodes. Jpn. J. Appl. Phys. 39, 2110–2113 (2000).

    CAS  Article  Google Scholar 

  47. Oka, D., Hirose, Y., Nakao, S., Fukumura, T. & Hasegawa, T. Intrinsic high electrical conductivity of stoichiometric SrNbO3 epitaxial thin films. Phys. Rev. B 92, 205102 (2015).

    Article  CAS  Google Scholar 

  48. Duan, C.-G., Sabirianov, R. F., Mei, W.-N., Jaswal, S. S. & Tsymbal, E. Y. Interface effect on ferroelectricity at the nanoscale. Nano Lett. 6, 483–487 (2006).

    CAS  Article  Google Scholar 

  49. Stengel, M., Vanderbilt, D. & Spaldin, N. A. Enhancement of ferroelectricity at metal−oxide interfaces. Nat. Mater. 8, 392–397 (2009).

    CAS  Article  Google Scholar 

  50. Lu, H. et al. Enhancement of ferroelectric polarization stability by interface engineering. Adv. Mater. 24, 1209–1216 (2012).

    CAS  Article  Google Scholar 

  51. Kim, J. Y., Choi, M.-J. & Jang, H. W. Ferroelectric field effect transistors: progress and perspective. APL Mater. 9, 021102 (2021).

    CAS  Article  Google Scholar 

  52. Li, J. et al. Ultrafast polarization switching in thin-film ferroelectrics. Appl. Phys. Lett. 84, 1174–1176 (2004).

    CAS  Article  Google Scholar 

  53. Merz, W. J. Domain formation and domain wall motions in ferroelectric BaTiO3 single crystals. Phys. Rev. 95, 690–698 (1954).

    CAS  Article  Google Scholar 

  54. Parsonnet, E. et al. Toward intrinsic ferroelectric switching in multiferroic BiFeO3. Phys. Rev. Lett. 125, 067601 (2020).

    CAS  Article  Google Scholar 

  55. Lapano, J. et al. Scaling growth rates for perovskite oxide virtual substrates on silicon. Nat. Commun. 10, 2464 (2019).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the U.S. Department of Energy, Office of Science, Office of Basic Energy Sciences, Materials Sciences and Engineering Division under contract no. DE-AC02-05-CH11231 (Codesign of Ultra-Low-Voltage Beyond CMOS Microelectronics (MicroelecLBLRamesh)) for the development of materials for low-power microelectronics. E.P., T.G., C.-C.L., D.E.N., H.L., and I.A.Y. acknowledge support from the COFEEE and FEINMAN Programs supported by Intel Corp. W.Z. acknowledges support from the National Science Foundation under grant no. DMR-1708615. D.P. acknowledges support from the European Union’s Horizon 2020 research and innovation programme under Marie Skłodowska-Curie grant agreement no. 79712. A.D. acknowledges support from the Army Research Office under ETHOS MURI via cooperative agreement no. W911NF-21-2-0162. M.A. acknowledges support from the Army Research Office under grant no. W911NF-21-1-0118. R.R. and L.W.M. acknowledge additional support of the ARL Collaborative for Hierarchical Agile and Resonant Materials under cooperative agreement no. W911NF-19-2-0119. R.R. also acknowledges support from ASCENT, which is one of the SRC-JUMP Centers. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the U.S. Department of Energy under Contract No. DE-AC02-05CH11231.

Author information

Authors and Affiliations

Authors

Contributions

Y.J. and L.W.M. designed the experiments. Y.J. synthesized the thin films. Y.J. and E.P. fabricated the capacitor-based devices. Y.J., E.P., and A.Q. performed the various electrical, dielectric, and ferroelectric measurements. Y.J. completed structural characterization of the materials. S.S. conducted STEM characterization. M.A. conducted RBS measurements. Y.J., E.P., W.Z., D.P., A.D., H.Z., T.G., C.-C.L., D.E.N., and H.L. contributed to the analysis and understanding of data. Y.J. and L.W.M. wrote the core of the manuscript. I.A.Y., R.R., and L.W.M. supervised the research. All authors contributed to the discussion and manuscript preparation and read the final manuscript.

Corresponding author

Correspondence to L. W. Martin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Morgan Trassin, Adrian Ionescu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1 and 2, Figs. 1–14 and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Y., Parsonnet, E., Qualls, A. et al. Enabling ultra-low-voltage switching in BaTiO3. Nat. Mater. 21, 779–785 (2022). https://doi.org/10.1038/s41563-022-01266-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01266-6

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing