Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers

Subjects

Abstract

Solid-state Li-ion batteries with lithium anodes offer higher energy densities and are safer than conventional liquid electrolyte-based Li-ion batteries. However, the growth of lithium dendrites across the solid-state electrolyte layer leads to the premature shorting of cells and limits their practical viability. Here, using solid-state Li half-cells with metallic interlayers between a garnet-based lithium-ion conductor and lithium, we show that interfacial void growth precedes dendrite nucleation and growth. Specifically, void growth was observed at a current density of around two-thirds of the critical current density for dendrite growth. Computational calculations reveal that interlayer materials with higher critical current densities for dendrite growth also have the largest thermodynamic and kinetic barriers for lithium vacancy accumulation at their interfaces with lithium. Our results suggest that interfacial modification with suitable metallic interlayers decreases the tendency for void growth and improves dendrite growth tolerance in solid-state electrolytes, even in the absence of high stack pressures.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Interfacial current density distribution at Li/SSE interfaces.
Fig. 2: Li nucleation overpotential for deposition on Al and W.
Fig. 3: Critical current density determination for cells with Al and W ILs.
Fig. 4: Temperature-dependent electrochemical performance of cells with ILs.
Fig. 5: Current density-dependent void growth in cells with ILs.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding author upon reasonable request.

References

  1. Li, J., Ma, C., Chi, M., Liang, C. & Dudney, N. J. Solid electrolyte: the key for high-voltage lithium batteries. Adv. Energy Mater. 5, 1401408 (2015).

    Article  Google Scholar 

  2. Albertus, P., Babinec, S., Litzelman, S. & Newman, A. Status and challenges in enabling the lithium metal electrode for high-energy and low-cost rechargeable batteries. Nat. Energy 3, 16–21 (2018).

    Article  CAS  Google Scholar 

  3. Janek, J. & Zeier, W. G. A solid future for battery development. Nat. Energy 1, 16141 (2016).

  4. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. 18, 1278–1291 (2019).

    Article  CAS  Google Scholar 

  5. Choi, J. W. & Aurbach, D. Promise and reality of post-lithium-ion batteries with high energy densities. Nat. Rev. Mater 1, 16013 (2016).

    Article  CAS  Google Scholar 

  6. Aetukuri, N. B. Flexible ion-conducting composite membranes for lithium batteries. Adv. Energy Mater 5, 1500265 (2015).

    Article  Google Scholar 

  7. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  CAS  Google Scholar 

  8. Kasemchainan, J. et al. Critical stripping current leads to dendrite formation on plating in lithium anode solid electrolyte cells. Nat. Mater. 18, 1105–1111 (2019).

    Article  CAS  Google Scholar 

  9. Cheng, E. J., Sharafi, A. & Sakamoto, J. Intergranular Li metal propagation through polycrystalline Li6.25Al0.25La3Zr2O12 ceramic electrolyte. Electrochim. Acta 223, 85–91 (2017).

    Article  CAS  Google Scholar 

  10. Swamy, T. et al. Lithium metal penetration induced by electrodeposition through solid electrolytes: example in single-crystal Li6La3ZrTaO12 garnet. J. Electrochem. Soc. 165, 3648–3655 (2018).

    Article  Google Scholar 

  11. Tsai, C. L. et al. Li7La3Zr2O12 interface modification for Li dendrite prevention. ACS Appl. Mater. Interfaces 8, 10617–10626 (2016).

    Article  CAS  Google Scholar 

  12. Sudo, R. et al. Interface behavior between garnet-type lithium-conducting solid electrolyte and lithium metal. Solid State Ion. 262, 151–154 (2014).

    Article  CAS  Google Scholar 

  13. Wu, B. et al. The role of the solid electrolyte interphase layer in preventing Li dendrite growth in solid-state batteries. Energy Environ. Sci. 11, 1803–1810 (2018).

    Article  CAS  Google Scholar 

  14. Sharafi, A., Meyer, H. M., Nanda, J., Wolfenstine, J. & Sakamoto, J. Characterizing the Li–Li7La3Zr2O12 interface stability and kinetics as a function of temperature and current density. J. Power Sources 302, 135–139 (2016).

    Article  CAS  Google Scholar 

  15. Inada, R. et al. Formation and stability of interface between garnet-type Ta-doped Li7La3Zr2O12 solid electrolyte and lithium metal electrode. Batteries 4, 26–38 (2018).

    Article  Google Scholar 

  16. Manalastas, W. et al. Mechanical failure of garnet electrolytes during Li electrodeposition observed by in-operando microscopy. J. Power Sources 412, 287–293 (2019).

    Article  CAS  Google Scholar 

  17. Sharafi, A. et al. Surface chemistry mechanism of ultra-low interfacial resistance in the solid-state electrolyte Li7La3Zr2O12. Chem. Mater. 29, 7961–7968 (2017).

    Article  CAS  Google Scholar 

  18. Han, F. et al. High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes. Nat. Energy 4, 187–196 (2019).

    Article  CAS  Google Scholar 

  19. Porz, L. et al. Mechanism of lithium metal penetration through inorganic solid electrolytes. Adv. Energy Mater 7, 1701003 (2017).

    Article  Google Scholar 

  20. Krauskopf, T., Hartmann, H., Zeier, W. G. & Janek, J. Toward a fundamental understanding of the lithium metal anode in solid-state batteries—an electrochemo-mechanical study on the garnet-type solid electrolyte Li6.25Al0.25La3Zr2O12. ACS Appl. Mater. Interfaces 11, 14463–14477 (2019).

    Article  CAS  Google Scholar 

  21. Wang, M. J., Choudhury, R. & Sakamoto, J. Characterizing the Li-solid-electrolyte interface dynamics as a function of stack pressure and current density. Joule 3, 2165–2178 (2019).

    Article  CAS  Google Scholar 

  22. Lu, Y. et al. An in situ element permeation constructed high endurance Li–LLZO interface at high current densities. J. Mater. Chem. A 6, 18853–18858 (2018).

    Article  CAS  Google Scholar 

  23. Wang, C. et al. Conformal, nanoscale ZnO surface modification of garnet-based solid-state electrolyte for lithium metal anodes. Nano Lett. 17, 565–571 (2017).

    Article  CAS  Google Scholar 

  24. Han, X. et al. Negating interfacial impedance in garnet-based solid-state Li metal batteries. Nat. Mater. 16, 572–579 (2017).

    CAS  Google Scholar 

  25. Fu, K. K. et al. Toward garnet electrolyte-based Li metal batteries: an ultrathin, highly effective, artificial solid-state electrolyte/metallic Li interface. Sci. Adv. 3, e1601659 (2017).

    Article  Google Scholar 

  26. Yang, Y. et al. Observation of conducting filament growth in nanoscale resistive memories. Nat. Commun. 3, 732 (2012).

    Article  Google Scholar 

  27. Onofrio, N., Guzman, D. & Strachan, A. Atomic origin of ultrafast resistance switching in nanoscale electrometallization cells. Nat. Mater. 14, 440–446 (2015).

    Article  CAS  Google Scholar 

  28. Yan, K. et al. Selective deposition and stable encapsulation of lithium through heterogeneous seeded growth. Nat. Energy 1, 16010 (2016).

    Article  CAS  Google Scholar 

  29. Thangadurai, V., Narayanan, S. & Pinzaru, D. Garnet-type solid-state fast Li ion conductors for Li batteries: critical review. Chem. Soc. Rev. 43, 4714–4727 (2014).

    Article  CAS  Google Scholar 

  30. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet-type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  31. Venturi, V. & Viswanathan, V. Thermodynamics of lithium stripping and limits for fast discharge in lithium metal batteries. ACS Energy Lett. (in the press); preprint at https://arxiv.org/abs/2103.03921 (2021).

  32. Fiolhais, C., Almeida, L. M. & Henriques, C. Extraction of aluminium surface energies from slab calculations: perturbative and non-perturbative approaches. Prog. Surf. Sci. 74, 209–217 (2003).

    Article  CAS  Google Scholar 

  33. Piazza, Z. A., Ajmalghan, M., Ferro, Y. & Kolasinski, R. D. Saturation of tungsten surfaces with hydrogen: a density functional theory study complemented by low energy ion scattering and direct recoil spectroscopy data. Acta Mater. 145, 388–398 (2018).

    Article  CAS  Google Scholar 

  34. Berne, B. J., Ciccotti, G. & Coker, D. F. (eds) Classical and Quantum Dynamics in Condensed Phase Simulations (World Scientific, 1998).

  35. Hjorth Larsen, A. et al. The atomic simulation environment—a Python library for working with atoms. J. Phys. Condens. Matter 29, 273002 (2017).

    Article  Google Scholar 

  36. Cortes, F. J. Q., Lewis, J. A., Tippens, J., Marchese, T. S. & McDowell, M. T. How metallic protection layers extend the lifetime of NASICON-based solid-state lithium batteries. J. Electrochem. Soc. 167, 050502 (2020).

    Article  CAS  Google Scholar 

  37. Mistry, A. & Mukherjee, P. P. Molar volume mismatch: a malefactor for irregular metallic electrodeposition with solid electrolytes. J. Electrochem. Soc. 167, 082510 (2020).

    Article  CAS  Google Scholar 

  38. Krauskopf, T., Richter, F. H., Zeier, W. G. & Janek, J. Physicochemical concepts of the lithium metal anode in solid-state batteries. Chem. Rev. 120, 7745–7794 (2020).

    Article  CAS  Google Scholar 

  39. Wood, K. N. et al. Dendrites and pits: untangling the complex behavior of lithium metal anodes through operando video microscopy. ACS Cent. Sci. 2, 790–801 (2016).

    Article  CAS  Google Scholar 

  40. Wood, K. N., Noked, M. & Dasgupta, N. P. Lithium metal anodes: toward an improved understanding of coupled morphological, electrochemical, and mechanical behavior. ACS Energy Lett. 2, 664–672 (2017).

    Article  CAS  Google Scholar 

  41. Towns, J. et al. XSEDE: accelerating scientific discovery. Comput. Sci. Eng. 16, 62–74 (2014).

    Article  Google Scholar 

  42. Li, Y., Han, J. T., Wang, C. A., Xie, H. & Goodenough, J. B. Optimizing Li+ conductivity in a garnet framework. J. Mater. Chem. 22, 15357–15361 (2012).

    Article  CAS  Google Scholar 

  43. Blöchl, P. E. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  44. Kresse, G. & Joubert, D. From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758–1775 (1999).

    CAS  Google Scholar 

  45. Mortensen, J. J., Hansen, L. B. & Jacobsen, K. W. Real-space grid implementation of the projector augmented wave method. Phys. Rev. B 71, 35109 (2005).

    Article  Google Scholar 

  46. Enkovaara, J. et al. Electronic structure calculations with GPAW: a real-space implementation of the projector augmented-wave method. J. Phys. Condens. Matter 22, 253202 (2010).

    Article  CAS  Google Scholar 

  47. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient aproximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  48. Monkhorst, H. J. & Pack, J. D. Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976).

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by grants from the Indian Space Research Organization (ISRO; grant no. ISTC/CSS/NPH/397), the Department of Heavy Industries (DHI), India, the Department of Science and Technology, India, through the DST-IISc Energy Storage Platform on Supercapacitors and Power Dense Devices under the MECSP-2K17 program (grant no. DST/TMD/MECSP/2K17/20) and by the Advanced Research Projects Agency-Energy Integration and Optimization of Novel Ion Conducting Solids (IONICS) programme (grant no. DE-AR0000774). V.R. acknowledges access to common facilities at CeNSE and SSCU. N.P.B.A. acknowledges the new faculty start-up grant (no. 12-0205-0618-77) provided by the Indian Institute of Science (IISc) and funding through the early career research award (grant no. ECR/2018/001047) of the Science and Engineering Research Board, Department of Science and Technology, India. The Extreme Science and Engineering Discovery Environment (XSEDE) is acknowledged for providing computational resources (award no. TG-CTS180061)41.

Author information

Authors and Affiliations

Authors

Contributions

N.P.B.A. designed and directed the work. V.R. and V.R.K. performed the experiments and analysed the experimental data. B.K. performed COMSOL simulations. V. Viswanathan directed the DFT and NEB studies. V. Venturi designed and performed the DFT and NEB modelling. All authors contributed to the writing of the manuscript.

Corresponding author

Correspondence to Naga Phani B. Aetukuri.

Ethics declarations

Competing interests

V.R., V.R.K. and N.P.B.A. are declared inventors on patent application number PCT/IB2020/058463 submitted by the Indian Institute of Science on the use of these ILs for high energy density batteries. V. Viswanathan is a technical consultant at QuantumScape Corporation.

Peer review

Peer review information

Nature Materials thanks Partha Mukherjee and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Extended data

Extended Data Fig. 1 Interfacial characterization of Al and W interlayer interfaces.

Cross-sectional SEM images of (a) Li/LLZTO (b) Li/Al/LLZTO and (c) Li/W/LLZTO interfaces. Discontinuities can be seen in the SEM image for Li/LLZTO interface, but not for the Li/Al/LLZTO or Li/W/LLZTO interfaces. The scale bars in all images correspond to a length of 20 µm.

Extended Data Fig. 2 Al and W slabs used for computational calculations.

Li monolayers on (100) surface facets of Al (a, b) and W (c, d). Top views are shown in panels (a) and (c), and side views are in panels (b) and (d).

Supplementary information

Supplementary Information

Supplementary Sections 1.1–1.8, Figs. 1–27, Tables 1 and 2, and references.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Raj, V., Venturi, V., Kankanallu, V.R. et al. Direct correlation between void formation and lithium dendrite growth in solid-state electrolytes with interlayers. Nat. Mater. 21, 1050–1056 (2022). https://doi.org/10.1038/s41563-022-01264-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01264-8

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing