Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

A single-atom library for guided monometallic and concentration-complex multimetallic designs


Atomically dispersed single-atom catalysts have the potential to bridge heterogeneous and homogeneous catalysis. Dozens of single-atom catalysts have been developed, and they exhibit notable catalytic activity and selectivity that are not achievable on metal surfaces. Although promising, there is limited knowledge about the boundaries for the monometallic single-atom phase space, not to mention multimetallic phase spaces. Here, single-atom catalysts based on 37 monometallic elements are synthesized using a dissolution-and-carbonization method, characterized and analysed to build the largest reported library of single-atom catalysts. In conjunction with in situ studies, we uncover unified principles on the oxidation state, coordination number, bond length, coordination element and metal loading of single atoms to guide the design of single-atom catalysts with atomically dispersed atoms anchored on N-doped carbon. We utilize the library to open up complex multimetallic phase spaces for single-atom catalysts and demonstrate that there is no fundamental limit on using single-atom anchor sites as structural units to assemble concentration-complex single-atom catalyst materials with up to 12 different elements. Our work offers a single-atom library spanning from monometallic to concentration-complex multimetallic materials for the rational design of single-atom catalysts.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Synthesis and characterization of monometallic SACs.
Fig. 2: Correlation analyses for the monometallic SAC properties.
Fig. 3: Temperature-induced evolution dynamics for SACs.
Fig. 4: Characterization and OER performance of concentration-complex SAC containing 12 different metallic elements.

Data availability

The data that support the findings of this study are available within the paper and its Supplementary Information. Source data are provided with this paper. Any other data are available from the corresponding author on request.


  1. Wu, G., More, K. L., Johnston, C. M. & Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 332, 443–447 (2011).

    Article  CAS  Google Scholar 

  2. Qiao, B. et al. Single-atom catalysis of CO oxidation using Pt1/FeOx. Nat. Chem. 3, 634–641 (2011).

    Article  CAS  Google Scholar 

  3. Cui, X., Li, W., Ryabchuk, P., Junge, K. & Beller, M. Bridging homogeneous and heterogeneous catalysis by heterogeneous single-metal-site catalysts. Nat. Catal. 1, 385–397 (2018).

    Article  CAS  Google Scholar 

  4. Ji, S., Chen, Y., Zhang, Z., Wang, D. & Li, Y. Chemical synthesis of single atomic site catalysts. Chem. Rev. 120, 11900–11955 (2020).

    Article  CAS  Google Scholar 

  5. Xiong, Y. et al. Single-atom Rh/N-doped carbon electrocatalyst for formic acid oxidation. Nat. Nanotechnol. 15, 390–397 (2020).

    Article  CAS  Google Scholar 

  6. Wang, Y. et al. Advanced electrocatalysts with single-metal-atom active sites. Chem. Rev. 120, 12217–12314 (2020).

    Article  CAS  Google Scholar 

  7. Jiang, K. et al. Dynamic active-site generation of atomic iridium stabilized on nanoporous metal phosphides for water oxidation. Nat. Commun. 11, 2701 (2020).

    Article  CAS  Google Scholar 

  8. Han, L. et al. Atomically dispersed molybdenum catalysts for efficient ambient nitrogen fixation. Angew. Chem. Int. Ed. 58, 2321–2325 (2019).

    Article  CAS  Google Scholar 

  9. Han, L. et al. Stable and efficient single-atom Zn catalyst for CO2 reduction to CH4. J. Am. Chem. Soc. 142, 12563–12567 (2020).

    Article  CAS  Google Scholar 

  10. Han, L. et al. Local modulation of single-atomic Mn sites for enhanced ambient ammonia electrosynthesis. ACS Catal. 11, 509–516 (2020).

    Article  CAS  Google Scholar 

  11. Zhao, L. et al. Cascade anchoring strategy for general mass production of high-loading single-atomic metal–nitrogen catalysts. Nat. Commun. 10, 1278 (2019).

    Article  CAS  Google Scholar 

  12. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO2. Science 364, 1091–1094 (2019).

    Article  CAS  Google Scholar 

  13. Fei, H. et al. General synthesis and definitive structural identification of MN4C4 single-atom catalysts with tunable electrocatalytic activities. Nat. Catal. 1, 63–72 (2018).

    Article  CAS  Google Scholar 

  14. Gao, C. et al. Heterogeneous single-atom photocatalysts: fundamentals and applications. Chem. Rev. 120, 12175–12216 (2020).

    Article  CAS  Google Scholar 

  15. Ding, S. P., Hulsey, M. J., Perez-Ramirez, J. & Yang, N. Transforming energy with single-atom catalysts. Joule 3, 2897–2929 (2019).

    Article  CAS  Google Scholar 

  16. Fei, H. et al. Single atom electrocatalysts supported on graphene or graphene-like carbons. Chem. Soc. Rev. 48, 5207–5241 (2019).

    Article  CAS  Google Scholar 

  17. Yang, H. et al. A universal ligand mediated method for large scale synthesis of transition metal single atom catalysts. Nat. Commun. 10, 4585 (2019).

    Article  CAS  Google Scholar 

  18. Wang, L. et al. A sulfur-tethering synthesis strategy toward high-loading atomically dispersed noble metal catalysts. Sci. Adv. 5, eaax6322 (2019).

    Article  CAS  Google Scholar 

  19. Jones, J. et al. Thermally stable single-atom platinum-on-ceria catalysts via atom trapping. Science 353, 150–154 (2016).

    Article  CAS  Google Scholar 

  20. Guo, J. et al. Nitrogen-doped porous carbon supported nonprecious metal single-atom electrocatalysts: from synthesis to application. Small Methods 3, 1900159 (2019).

    Article  CAS  Google Scholar 

  21. Vukmirovic, M. B., Teeluck, K. M., Liu, P. & Adzic, R. R. Single platinum atoms electrocatalysts: oxygen reduction and hydrogen oxidation reactions. Croat. Chem. Acta 90, 225–230 (2017).

    Article  CAS  Google Scholar 

  22. Asakura, D. et al. Material/element-dependent fluorescence-yield modes on soft X-ray absorption spectroscopy of cathode materials for Li-ion batteries. AIP Adv. 6, 035105 (2016).

    Article  CAS  Google Scholar 

  23. Shannon, R. D. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. 32, 751–767 (1976).

    Article  Google Scholar 

  24. Walsh, A., Sokol, A. A., Buckeridge, J., Scanlon, D. O. & Catlow, C. R. A. Oxidation states and ionicity. Nat. Mater. 17, 958–964 (2018).

    Article  CAS  Google Scholar 

  25. Wang, J. et al. Design of N-coordinated dual-metal sites: a stable and active Pt-free catalyst for acidic oxygen reduction reaction. J. Am. Chem. Soc. 139, 17281–17284 (2017).

    Article  CAS  Google Scholar 

  26. Ren, W. et al. Isolated diatomic Ni–Fe metal–nitrogen sites for synergistic electroreduction of CO2. Angew. Chem. Int. Ed. 58, 6972–6976 (2019).

    Article  CAS  Google Scholar 

  27. Gu, J., Hsu, C.-S., Bai, L., Chen, H. M. & Hu, X. Atomically dispersed Fe3+ sites catalyze efficient CO2 electroreduction to CO. Science 364, 1091–1094 (2019).

    Article  CAS  Google Scholar 

  28. Luo, X., Jean-Charles, R. & Yu, S. Effect of temperature on graphite oxidation behavior. Nucl. Eng. Des. 227, 273–280 (2004).

    Article  CAS  Google Scholar 

  29. Zhang, B. et al. Homogeneously dispersed multimetal oxygen-evolving catalysts. Science 352, 333–337 (2016).

    Article  CAS  Google Scholar 

  30. Qiu, H.-J. et al. Noble metal-free nanoporous high-entropy alloys as highly efficient electrocatalysts for oxygen evolution reaction. ACS Mater. Lett. 1, 526–533 (2019).

    Article  CAS  Google Scholar 

  31. Ding, Z. et al. High entropy intermetallic–oxide core–shell nanostructure as superb oxygen evolution reaction catalyst. Adv. Sustain. Syst. 4, 1900105 (2020).

    Article  CAS  Google Scholar 

  32. Fang, G. et al. Multi-component nanoporous alloy/(oxy)hydroxide for bifunctional oxygen electrocatalysis and rechargeable Zn–air batteries. Appl. Catal. B 268, 118431 (2020).

    Article  CAS  Google Scholar 

  33. Sun, H. et al. Atomic metal–support interaction enables reconstruction-free dual-site electrocatalyst. J. Am. Chem. Soc. 144, 1174–1186 (2022).

    Article  CAS  Google Scholar 

  34. Mkhoyan, K. A., Batson, P. E., Cha, J., Schaff, W. J. & Silcox, J. Direct determination of local lattice polarity in crystals. Science 312, 1354–1354 (2006).

    Article  CAS  Google Scholar 

  35. Ravel, B. & Newville, M. ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J. Synchrotron Radiat. 12, 537–541 (2005).

    Article  CAS  Google Scholar 

  36. Joly, Y. X-ray absorption near-edge structure calculations beyond the muffin-tin approximation. Phys. Rev. B 63, 125120 (2001).

    Article  CAS  Google Scholar 

  37. Bunău, O. & Joly, Y. Self-consistent aspects of x-ray absorption calculations. J. Phys. Condens. Matter 21, 345501 (2009).

    Article  CAS  Google Scholar 

  38. Kresse, G. & Hafner, J. Ab initio molecular-dynamics simulation of the liquid-metal–amorphous-semiconductor transition in germanium. Phys. Rev. B 49, 14251–14269 (1994).

    Article  CAS  Google Scholar 

  39. Kresse, G. & Furthmüller, J. Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15–50 (1996).

    Article  CAS  Google Scholar 

  40. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  41. Payne, M. C., Teter, M. P., Allan, D. C., Arias, T. A. & Joannopoulos, J. D. Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64, 1045–1097 (1992).

    Article  CAS  Google Scholar 

  42. Kirklin, S. et al. The Open Quantum Materials Database (OQMD): assessing the accuracy of DFT formation energies. NPJ Comput. Mater. 1, 15010 (2015).

    Article  CAS  Google Scholar 

Download references


This work was supported by the National Science Foundation under award number CHE-1900401 and the start-up funding of H.L.X provided by UC Irvine. This research used resources of the Center for Functional Nanomaterials as well as 7-BM and 23-ID-2 beamlines of the National Synchrotron Light Source II, which are two US Department of Energy (DOE) Office of Science User Facilities operated for the DOE Office of Science by Brookhaven National Laboratory under contract DE-SC0012704. It also used resources of the Advanced Photon Source, a US DOE Office of Science User Facility operated for the DOE Office of Science by Argonne National Laboratory under contract DE-AC02-06CH11357. The XAFS/EXAFS spectra obtained from beamline TPS 44A at the National Synchrotron Radiation Research Center (NSRRC) and the soft XAS data obtained from beamline TLS-BL24A at NSRRC are appreciated. This work made use of facilities and instrumentation at the UC Irvine Materials Research Institute (IMRI), which is supported in part by the National Science Foundation through the UC Irvine Materials Research Science and Engineering Center (DMR-2011967). W.L., H.L., J.L. and J.-C.Z. are unfunded.

Author information

Authors and Affiliations



H.L.X. conceived the idea. J.L., J.-C.Z. and H.L.X. co-supervised the project and revised the paper. L.H. designed the experiments and wrote the paper. H.C. performed the XANES and EXAFS fittings and analyses. W.L. and H.L. synthesized the samples. P.O. performed the DFT calculations of formation energy. L.H., R.L., H.-T.W., C.-W.P., C.-J.S., C.H.W. and W.-F.P. took and analysed the soft XAS and XAFS spectra. L.H., A.R.H. and X.T. performed the in situ XPS experiments. All authors discussed the results and implications at all stages.

Corresponding authors

Correspondence to Jun Luo, Jin-Cheng Zheng or Huolin L. Xin.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Taeghwan Hyeon and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–71, Tables 1–9 and refs. 1–16.

Supplementary Data

Optimized computational models.

Source data

Source Data Fig. 1

Source Data for Fig. 1d.

Source Data Fig. 2

Source Data for Fig. 2.

Source Data Fig. 3

Source Data for Fig. 3a,c,f–l.

Source Data Fig. 4

Source Data for Fig. 4e–h.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Han, L., Cheng, H., Liu, W. et al. A single-atom library for guided monometallic and concentration-complex multimetallic designs. Nat. Mater. 21, 681–688 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing