Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Nanotwinning-assisted dynamic recrystallization at high strains and strain rates

Abstract

Grain refinement is a widely sought-after feature of many metal production processes and frequently involves a process of recrystallization. Some processing methods use very high strain rates and high strains to refine the grain structure into the nanocrystalline regime. However, grain refinement processes are not clear in these extreme conditions, which are hard to study systematically. Here, we access those extreme conditions of strain and strain rate using single copper microparticle impact events with a laser-induced particle impact tester. Using a combined dictionary-indexing electron backscatter diffraction and scanning transmission electron microscopy approach for postmortem characterization of impact sites, we systematically explore increasing strain levels and observe a recrystallization process that is facilitated by nanotwinning, which we term nanotwinning-assisted dynamic recrystallization. It achieves much finer grain sizes than established modes of recrystallization and therefore provides a pathway to the finest nanocrystalline grain sizes through extreme straining processes.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Deformation map and schematics of microstructure evolution during DRX.
Fig. 2: Characterization of an impact site for a rebounded particle.
Fig. 3: Characterization of an impact site for a lightly deformed adhered particle.
Fig. 4: Characterization of an impact site for a strongly deformed adhered particle at 647 m s−1.
Fig. 5: Characterization of an impact site for a strongly deformed adhered particle at 768 m s−1.

Data availability

The data supporting the findings of this study are available within this article and its Supplementary Information.

References

  1. Humphreys, J., Rohrer, G. S. & Rollett, A. In Recrystallization and Related Annealing Phenomena https://doi.org/10.1016/b978-0-08-098235-9.00007-0 (2017).

  2. Lu, K. & Lu, J. Nanostructured surface layer on metallic materials induced by surface mechanical attrition treatment. Mater. Sci. Eng. A Struct. Mater. 377, 38–45 (2004).

    Article  CAS  Google Scholar 

  3. Suryanarayana, C. Mechanical alloying and milling. Prog. Mater. Sci. 46, 1–184 (2001).

    CAS  Article  Google Scholar 

  4. Li, W. L., Tao, N. R. & Lu, K. Fabrication of a gradient nano-micro-structured surface layer on bulk copper by means of a surface mechanical grinding treatment. Scr. Mater. 59, 546–549 (2008).

    CAS  Article  Google Scholar 

  5. Liu, T., Leazer, J. D. & Brewer, L. N. Particle deformation and microstructure evolution during cold spray of individual Al-Cu alloy powder particles. Acta Mater. 168, 13–23 (2019).

    CAS  Article  Google Scholar 

  6. Huang, K. & Logé, R. E. A review of dynamic recrystallization phenomena in metallic materials. Mater. Des. 111, 548–574 (2016).

    CAS  Article  Google Scholar 

  7. Rokni, M. R., Nutt, S. R., Widener, C. A., Champagne, V. K. & Hrabe, R. H. Review of relationship between particle deformation, coating microstructure, and properties in high-pressure cold spray. J. Therm. Spray. Technol. 26, 1308–1355 (2017).

    Article  Google Scholar 

  8. Sakai, T., Belyakov, A., Kaibyshev, R., Miura, H. & Jonas, J. J. Dynamic and post-dynamic recrystallization under hot, cold and severe plastic deformation conditions. Prog. Mater. Sci. 60, 130–207 (2014).

    CAS  Article  Google Scholar 

  9. Brown, T. L. et al. A study of the interactive effects of strain, strain rate and temperature in severe plastic deformation of copper. Acta Mater. 57, 5491–5500 (2009).

    CAS  Article  Google Scholar 

  10. Liu, Z. et al. Prediction of heterogeneous microstructural evolution in cold sprayed copper coatings using local Zener-Hollomon parameter and strain. Acta Mater. 193, 191–201 (2020).

    CAS  Article  Google Scholar 

  11. Bracke, L., Verbeken, K., Kestens, L. & Penning, J. Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater. 57, 1512–1524 (2009).

    CAS  Article  Google Scholar 

  12. Konijnenberg, P. J., Zaefferer, S. & Raabe, D. Assessment of geometrically necessary dislocation levels derived by 3D EBSD. Acta Mater. 99, 402–414 (2015).

    CAS  Article  Google Scholar 

  13. Hassani-Gangaraj, M., Veysset, D., Champagne, V. K. Jr. & Schuh, C. A. Adiabatic shear instability is not necessary for adhesion in cold spray. Acta Mater. 158, 430–439 (2018).

    CAS  Article  Google Scholar 

  14. Yan, C. K. et al. Dynamic recrystallization of titanium: effect of pre-activated twinning at cryogenic temperature. Acta Mater. 154, 311–324 (2018).

    CAS  Article  Google Scholar 

  15. Molodov, K. D., Al-Samman, T., Molodov, D. A. & Gottstein, G. Mechanisms of exceptional ductility of magnesium single crystal during deformation at room temperature: multiple twinning and dynamic recrystallization. Acta Mater. 76, 314–330 (2014).

    CAS  Article  Google Scholar 

  16. Jiang, M. G., Yan, H. & Chen, R. S. Twinning, recrystallization and texture development during multi-directional impact forging in an AZ61 Mg alloy. J. Alloy. Compd 650, 399–409 (2015).

    CAS  Article  Google Scholar 

  17. Ding, S., Taylor, T., Khan, S. A., Sato, Y. & Yanagimoto, J. Further understanding of metadynamic recrystallization through thermomechanical tests and EBSD characterization. J. Mater. Process. Technol. 299, 117359 (2022).

    CAS  Article  Google Scholar 

  18. Basu, I. & Al-Samman, T. Twin recrystallization mechanisms in magnesium-rare earth alloys. Acta Mater. 96, 111–132 (2015).

    CAS  Article  Google Scholar 

  19. Jin, Z. Z. et al. Effects of Mg17Al12 second phase particles on twinning-induced recrystallization behavior in Mg‒Al‒Zn alloys during gradient hot rolling. J. Mater. Sci. Technol. 35, 2017–2026 (2019).

    CAS  Article  Google Scholar 

  20. Jiang, M. G. et al. Unveiling the formation of basal texture variations based on twinning and dynamic recrystallization in AZ31 magnesium alloy during extrusion. Acta Mater. 157, 53–71 (2018).

    CAS  Article  Google Scholar 

  21. Zhen, L., Zou, D. L., Xu, C. Y. & Shao, W. Z. Microstructure evolution of adiabatic shear bands in AM60B magnesium alloy under ballistic impact. Mater. Sci. Eng. A Struct. Mater. 527, 5728–5733 (2010).

    Article  CAS  Google Scholar 

  22. Ouyang, L. et al. Hot deformation characteristics and dynamic recrystallization mechanisms of a Co–Ni-based superalloy. Mater. Sci. Eng. A Struct. Mater. 788, 139638 (2020).

    CAS  Article  Google Scholar 

  23. Li, S. et al. Twinning behaviors and grain refinement mechanisms during friction stir processing of Zr alloy. Mater. Charact. 163, 110277 (2020).

    CAS  Article  Google Scholar 

  24. Liu, S. et al. Dynamic recrystallization of pure zinc during high strain-rate compression at ambient temperature. Mater. Sci. Eng. A Struct. Mater. 784, 139325 (2020).

    CAS  Article  Google Scholar 

  25. Estrin, Y. & Vinogradov, A. Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater. 61, 782–817 (2013).

    CAS  Article  Google Scholar 

  26. Saldana, C., King, A. H. & Chandrasekar, S. Thermal stability and strength of deformation microstructures in pure copper. Acta Mater. 60, 4107–4116 (2012).

    CAS  Article  Google Scholar 

  27. Belyakov, A., Sakai, T., Miura, H. & Tsuzaki, K. Grain refinement in copper under large strain deformation. Philos. Mag. (Abingdon) 81, 2629–2643 (2001).

    CAS  Article  Google Scholar 

  28. Mishin, O. V. & Gottstein, G. Microstructural aspects of rolling deformation in ultrafine-grained copper. Philos. Mag. (Abingdon) 78, 373–388 (1998).

    CAS  Article  Google Scholar 

  29. Tolaminejad, B., Hoseini Athar, M. M., Arabi, H. & Karimi Taheri, A. Enhanced grain refinement of commercial pure copper using the ECAE of Al–Cu–Al tri-layer composite. Eng. Sci. Technol. Int. J. 19, 254–259 (2016).

    Google Scholar 

  30. Dalla Torre, F. et al. Microstructures and properties of copper processed by equal channel angular extrusion for 1-16 passes. Acta Mater. 52, 4819–4832 (2004).

    CAS  Article  Google Scholar 

  31. Moreno-Valle, E. C., Monclus, M. A., Molina-Aldareguia, J. M., Enikeev, N. & Sabirov, I. Biaxial deformation behavior and enhanced formability of ultrafine-grained pure copper. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 44, 2399–2408 (2013).

    CAS  Article  Google Scholar 

  32. Blum, W., Li, Y. J., Zhang, Y. & Wang, J. T. Deformation resistance in the transition from coarse-grained to ultrafine-grained Cu by severe plastic deformation up to 24 passes of ECAP. Mater. Sci. Eng. A Struct. Mater. 528, 8621–8627 (2011).

    CAS  Article  Google Scholar 

  33. Wen, H. et al. Influence of pressing temperature on microstructure evolution and mechanical behavior of ultrafine-grained cu processed by equal-channel angular pressing. Adv. Eng. Mater. 14, 185–194 (2012).

    CAS  Article  Google Scholar 

  34. Huang, J. Y., Wu, Y. K. & Ye, H. Q. Deformation structures in ball milled copper. Acta Mater. 44, 1211–1221 (1996).

    CAS  Article  Google Scholar 

  35. Huang, J. Y., Liao, X. Z., Zhu, Y. T., Zhou, F. & Lavernia, E. J. Grain boundary structure of nanocrystalline Cu processed by cryomilling. Philos. Mag. (Abingdon) 83, 1407–1419 (2003).

    CAS  Article  Google Scholar 

  36. Wang, K., Tao, N. R., Liu, G., Lu, J. & Lu, K. Plastic strain-induced grain refinement at the nanometer scale in copper. Acta Mater. 54, 5281–5291 (2006).

    CAS  Article  Google Scholar 

  37. Meyers, M. A., Vöhringer, O. & Lubarda, V. A. The onset of twinning in metals: a constitutive description. Acta Mater. 49, 4025–4039 (2001).

    CAS  Google Scholar 

  38. Li, Y. S., Zhang, Y., Tao, N. R. & Lu, K. Effect of the Zener-Hollomon parameter on the microstructures and mechanical properties of Cu subjected to plastic deformation. Acta Mater. 57, 761–772 (2009).

    CAS  Article  Google Scholar 

  39. Derby, B. The dependence of grain size on stress during dynamic recrystallisation. Acta Metall. Mater. 39, 955–962 (1991).

    CAS  Article  Google Scholar 

  40. Pougis, A., Toth, L. S., Fundenberger, J. J. & Borbely, A. Extension of the Derby relation to metals severely deformed to their steady-state ultrafine-grain size. Scr. Mater. 72–73, 59–62 (2014).

    Article  CAS  Google Scholar 

  41. King, P. C., Zahiri, S. H. & Jahedi, M. Microstructural refinement within a cold-sprayed copper particle. Metall. Mater. Trans. A Phys. Metall. Mater. Sci. 40, 2115–2124 (2009).

    Article  CAS  Google Scholar 

  42. Voisin, T. et al. In situ TEM observations of high-strain-rate deformation and fracture in pure copper. Mater. Today 33, 10–16 (2020).

    CAS  Article  Google Scholar 

  43. Xue, Q., Beyerlein, I. J., Alexander, D. J. & G., G. T. III Mechanisms for initial grain refinement in OFHC copper during equal channel angular pressing. Acta Mater. 55, 655–668 (2007).

    CAS  Article  Google Scholar 

  44. Li, D. Z., Wei, Y. H., Hou, L. F. & Lin, W. M. Microstructural evolution of surface layer of TWIP steel deformed by mechanical attrition treatment. J. Iron. Steel Res. Int. 19, 38–46 (2012).

    Article  Google Scholar 

  45. Ding, J., Shang, Z., Li, J., Wang, H. & Zhang, X. Microstructure and tensile behavior of nanostructured gradient TWIP steel. Mater. Sci. Eng. A Struct. Mater. 785, 139346 (2020).

    CAS  Article  Google Scholar 

  46. Shao, C. W., Zhang, P., Tian, Y. Z., Wang, Q. & Zhang, Z. F. A novel top-down approach to make bulk nanostructured metal with low stacking fault energy. Materialia 5, 100201 (2019).

  47. An, X. H. et al. Microstructural evolution and phase transformation in twinning-induced plasticity steel induced by high-pressure torsion. Acta Mater. 109, 300–313 (2016).

    CAS  Article  Google Scholar 

  48. Kim, J. G. et al. Superior strength and multiple strengthening mechanisms in nanocrystalline TWIP steel. Sci. Rep. 8, 11200 (2018).

    Article  CAS  Google Scholar 

  49. Li, N. et al. Localized amorphism after high-strain-rate deformation in TWIP steel. Acta Mater. 59, 6369–6377 (2011).

    CAS  Article  Google Scholar 

  50. Veysset, D. et al. Dynamics of supersonic microparticle impact on elastomers revealed by real-time multi-frame imaging. Sci. Rep. 6, 25577 (2016).

  51. Hassani-Gangaraj, M., Veysset, D., Nelson, K. A. & Schuh, C. A. In-situ observations of single micro-particle impact bonding. Scr. Mater. 145, 9–13 (2018).

    CAS  Article  Google Scholar 

  52. Tiamiyu, A. A., Sun, Y., Nelson, K. A. & Schuh, C. A. Site-specific study of jetting, bonding, and local deformation during high-velocity metallic microparticle impact. Acta Mater. 202, 159–169 (2021).

    CAS  Article  Google Scholar 

  53. Tiamiyu, A. A. & Schuh, C. A. Particle flattening during cold spray: Mechanistic regimes revealed by single particle impact tests. Surf. Coat. Technol. 403, 126386 (2020).

    CAS  Article  Google Scholar 

  54. Tate, M. W. et al. High dynamic range pixel array detector for scanning transmission electron microscopy. Microsc. Microanal. 22, 237–249 (2016).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was primarily supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under award no. DE-SC0018091. Support for equipment was also provided through the Office of Naval Research DURIP (grant no. N00014-13-1-0676). A.A.T. thanks the Natural Sciences and Engineering Research Council of Canada Postdoctoral Fellowship for financial support. X.C. and J.M.L. acknowledge the support of the Air Force Office of Scientific Research, under contract no. FA9550-20-0066, for STEM experiments. E.L.P. acknowledges support from the NSF Graduate Research Fellowship Program under grant no. DGE-1745302. FIB and SEM/EBSD were performed at the Harvard University Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under NSF award no. ECCS-2025158. We thank Y. Sun for assistance in conducting the LIPIT experiment.

Author information

Authors and Affiliations

Authors

Contributions

A.A.T. and C.A.S. conceived the project. A.A.T. designed the experiments. C.A.S. and K.A.N. supervised the study. A.A.T. performed LIPIT tests, site-specific FIB lamella lift-outs and SEM and EBSD data acquisition. E.L.P. wrote codes and performed dictionary indexing of the acquired EBSD dataset. X.C. and J.M.L. conducted STEM experiments and acquisition of virtual dark-field images. A.A.T., E.L.P. and C.A.S. wrote the manuscript. All authors discussed the results and reviewed the manuscript.

Corresponding author

Correspondence to Christopher A. Schuh.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Anthony Rollett, Kaneaki Tsuzaki and Roland Logé for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, discussion and Tables 1–3.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tiamiyu, A.A., Pang, E.L., Chen, X. et al. Nanotwinning-assisted dynamic recrystallization at high strains and strain rates. Nat. Mater. (2022). https://doi.org/10.1038/s41563-022-01250-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1038/s41563-022-01250-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing