Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues

Abstract

Homo- and heterojunctions play essential roles in semiconductor-based devices such as field-effect transistors, solar cells, photodetectors and light-emitting diodes. Semiconductor junctions have been recently used to optically trigger biological modulation via photovoltaic or photoelectrochemical mechanisms. The creation of heterojunctions typically involves materials with different doping or composition, which leads to high cost, complex fabrications and potential side effects at biointerfaces. Here we show that a porosity-based heterojunction, a largely overlooked system in materials science, can yield an efficient photoelectrochemical response from the semiconductor surface. Using self-limiting stain etching, we create a nanoporous/non-porous, soft–hard heterojunction in p-type silicon within seconds under ambient conditions. Upon surface oxidation, the heterojunction yields a strong photoelectrochemical response in saline. Without any interconnects or metal modifications, the heterojunction enables efficient non-genetic optoelectronic stimulation of isolated rat hearts ex vivo and sciatic nerves in vivo with optical power comparable to optogenetics, and with near-infrared capabilities.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Nanoporous/non-porous silicon materials enable efficient photoelectrochemical effects, and their biomimetic structure makes them suitable for application in biointerfaces.
Fig. 2: Microscopy analysis of the material structure.
Fig. 3: Screening of etching conditions for photocurrent generation.
Fig. 4: Electrochemical analysis of the nanoporous silicon.
Fig. 5: Pacing of isolated hearts ex vivo.
Fig. 6: In vivo sciatic nerve stimulation.

Similar content being viewed by others

Data availability

All data supporting the results of this study are presented in the manuscript or the Supplementary Information. All raw data are available at https://osf.io/abyq2/.

Code availability

Custom code used in this study is available at https://osf.io/abyq2/.

References

  1. Feiner, R. et al. Engineered hybrid cardiac patches with multifunctional electronics for online monitoring and regulation of tissue function. Nat. Mater. 15, 679–685 (2016).

    Article  CAS  Google Scholar 

  2. Fang, H. et al. Capacitively coupled arrays of multiplexed flexible silicon transistors for long-term cardiac electrophysiology. Nat. Biomed. Eng. 1, 0038 (2017).

  3. Xu, L. et al. 3D multifunctional integumentary membranes for spatiotemporal cardiac measurements and stimulation across the entire epicardium. Nat. Commun. 5, 3329 (2014).

    Article  CAS  Google Scholar 

  4. Kim, D. H. et al. Epidermal electronics. Science 333, 838–843 (2011).

    Article  CAS  Google Scholar 

  5. Jiang, Y. et al. Rational design of silicon structures for optically controlled multiscale biointerfaces. Nat. Biomed. Eng. 2, 508–521 (2018).

    Article  CAS  Google Scholar 

  6. Feiner, R. & Dvir, T. Tissue–electronics interfaces: from implantable devices to engineered tissues. Nat. Rev. Mater. 3, 17076 (2017).

    Article  CAS  Google Scholar 

  7. Murphy, J. J. Current practice and complications of temporary transvenous cardiac pacing. Brit. Med. J. 312, 1134 (1996).

    Article  CAS  Google Scholar 

  8. Austin, J. L., Preis, L. K., Crampton, R. S., Beller, G. A. & Martin, R. P. Analysis of pacemaker malfunction and complications of temporary pacing in the coronary care unit. Am. J. Cardiol. 49, 301–306 (1982).

    Article  CAS  Google Scholar 

  9. Betts, T. R. Regional survey of temporary transvenous pacing procedures and complications. Postgrad. Med. J. 79, 463–465 (2003).

    Article  CAS  Google Scholar 

  10. Nolewajka, A. J., Goddard, M. D. & Brown, T. C. Temporary transvenous pacing and femoral vein thrombosis. Circulation 62, 646–650 (1980).

    Article  CAS  Google Scholar 

  11. Rossillo, A. et al. Impact of coronary sinus lead position on biventricular pacing: mortality and echocardiographic evaluation during long-term follow-up. J. Cardiovasc. Electrophysiol. 15, 1120–1125 (2004).

    Article  Google Scholar 

  12. Peschar, M., de Swart, H., Michels, K. J., Reneman, R. S. & Prinzen, F. W. Left ventricular septal and apex pacing for optimal pump function in canine hearts. J. Am. Coll. Cardiol. 41, 1218–1226 (2003).

    Article  Google Scholar 

  13. Wells, J. et al. Optical stimulation of neural tissue in vivo. Opt. Lett. 30, 504–506 (2005).

    Article  Google Scholar 

  14. Wells, J., Konrad, P., Kao, C., Jansen, E. D. & Mahadevan-Jansen, A. Pulsed laser versus electrical energy for peripheral nerve stimulation. J. Neurosci. Methods 163, 326–337 (2007).

    Article  Google Scholar 

  15. Jenkins, M. W. et al. Optical pacing of the embryonic heart. Nat. Photon. 4, 623–626 (2010).

    Article  CAS  Google Scholar 

  16. Jenkins, M. W. et al. Optical pacing of the adult rabbit heart. Biomed. Opt. Express 4, 1626–1635 (2013).

    Article  Google Scholar 

  17. McCall, J. G. et al. Preparation and implementation of optofluidic neural probes for in vivo wireless pharmacology and optogenetics. Nat. Protoc. 12, 219–237 (2017).

    Article  CAS  Google Scholar 

  18. Montgomery, K. L. et al. Wirelessly powered, fully internal optogenetics for brain, spinal and peripheral circuits in mice. Nat. Methods 12, 969–974 (2015).

    Article  CAS  Google Scholar 

  19. Nussinovitch, U. & Gepstein, L. Optogenetics for in vivo cardiac pacing and resynchronization therapies. Nat. Biotechnol. 33, 750–754 (2015).

    Article  CAS  Google Scholar 

  20. Koo, J. et al. Wireless bioresorbable electronic system enables sustained nonpharmacological neuroregenerative therapy. Nat. Med. 24, 1830–1836 (2018).

    Article  CAS  Google Scholar 

  21. Choi, Y. S. et al. Fully implantable and bioresorbable cardiac pacemakers without leads or batteries. Nat. Biotechnol. 39, 1228–1238 (2021).

    Article  CAS  Google Scholar 

  22. Piech, D. K. et al. A wireless millimetre-scale implantable neural stimulator with ultrasonically powered bidirectional communication. Nat. Biomed. Eng. 4, 207–222 (2020).

    Article  Google Scholar 

  23. Jiang, Y. & Tian, B. Inorganic semiconductor biointerfaces. Nat. Rev. Mater. 3, 473–490 (2018).

    Article  Google Scholar 

  24. Rotenberg, M. Y. & Tian, B. Talking to cells: semiconductor nanomaterials at the cellular interface. Adv. Biosyst. 2, 1700242 (2018).

    Article  Google Scholar 

  25. Silvera Ejneby, M. et al. Chronic electrical stimulation of peripheral nerves via deep-red light transduced by an implanted organic photocapacitor. Nat. Biomed. Eng. https://doi.org/10.1038/s41551-021-00817-7 (2021).

    Article  Google Scholar 

  26. Yan, F., Bao, X.-M. & Gao, T. Photovoltage spectra of silicon/porous silicon heterojunction. Solid State Commun. 91, 341–343 (1994).

    Article  CAS  Google Scholar 

  27. Palsule, C. et al. Electrical and optical characterization of crystalline silicon/porous silicon heterojunctions. Sol. Energy Mater. Sol. Cells 46, 261–269 (1997).

    Article  CAS  Google Scholar 

  28. Suntao, W., Yanhua, W. & Qihua, S. Measurement and analysis of the characteristic parameters for the porous silicon/silicon using photovoltage spectra. Appl. Surf. Sci. 158, 268–274 (2000).

    Article  CAS  Google Scholar 

  29. Fang, Y. et al. Micelle-enabled self-assembly of porous and monolithic carbon membranes for bioelectronic interfaces. Nat. Nanotechnol. 16, 206–213 (2021).

    Article  CAS  Google Scholar 

  30. Jiang, Y. et al. Heterogeneous silicon mesostructures for lipid-supported bioelectric interfaces. Nat. Mater. 15, 1023–1030 (2016).

    Article  CAS  Google Scholar 

  31. Kolasinski, K. W. in Handbook of Porous Silicon (ed. Canham, L.) Ch. 4 (Springer, 2018).

  32. Yerokhov, V. Y. & Melnyk, I. I. Porous silicon in solar cell structures: a review of achievements and modern directions of further use. Renew. Sustain. Energy Rev. 3, 291–322 (1999).

    Article  CAS  Google Scholar 

  33. Alhmoud, H., Brodoceanu, D., Elnathan, R., Kraus, T. & Voelcker, N. H. A MACEing silicon: towards single-step etching of defined porous nanostructures for biomedicine. Prog. Mater. Sci. 116, 100636 (2021).

    Article  CAS  Google Scholar 

  34. Hopcroft, M. A., Nix, W. D. & Kenny, T. W. What is the Young’s modulus of silicon? J. Microelectromech. Syst. 19, 229–238 (2010).

    Article  CAS  Google Scholar 

  35. Jiang, Y. et al. Nongenetic optical neuromodulation with silicon-based materials. Nat. Protoc. 14, 1339–1376 (2019).

    Article  CAS  Google Scholar 

  36. Glunz, S. W. & Feldmann, F. SiO2 surface passivation layers – a key technology for silicon solar cells. Sol. Energy Mater. Sol. Cells 185, 260–269 (2018).

    Article  CAS  Google Scholar 

  37. Nosaka, Y. & Nosaka, A. Y. Generation and detection of reactive oxygen species in photocatalysis. Chem. Rev. 117, 11302–11336 (2017).

    Article  CAS  Google Scholar 

  38. Tampo, H., Kim, S., Nagai, T., Shibata, H. & Niki, S. Improving the open circuit voltage through surface oxygen plasma treatment and 11.7% efficient Cu2ZnSnSe4 solar cell. ACS Appl. Mater. Interfaces 11, 13319–13325 (2019).

    Article  CAS  Google Scholar 

  39. Parameswaran, R. et al. Optical stimulation of cardiac cells with a polymer-supported silicon nanowire matrix. Proc. Natl Acad. Sci. USA 116, 413–421 (2019).

    Article  CAS  Google Scholar 

  40. Bruegmann, T. et al. Optogenetic control of heart muscle in vitro and in vivo. Nat. Methods 7, 897–900 (2010).

    Article  CAS  Google Scholar 

  41. Jacques, S. L. Optical properties of biological tissues: a review. Phys. Med. Biol. 58, R37–61 (2013).

    Article  Google Scholar 

  42. Ushiki, T. & Ide, C. Three-dimensional organization of the collagen fibrils in the rat sciatic nerve as revealed by transmission- and scanning electron microscopy. Cell Tissue Res. 260, 175–184 (1990).

    Article  CAS  Google Scholar 

  43. Koutsou, A. D., Moreno, J. C., del Ama, A. J., Rocon, E. & Pons, J. L. Advances in selective activation of muscles for non-invasive motor neuroprostheses. J. Neuroeng. Rehabilitation 13, 56 (2016).

    Article  Google Scholar 

  44. Badia, J. et al. Comparative analysis of transverse intrafascicular multichannel, longitudinal intrafascicular and multipolar cuff electrodes for the selective stimulation of nerve fascicles. J. Neural Eng. 8, 036023 (2011).

    Article  Google Scholar 

  45. Strauss, I. et al. Q-PINE: a quick to implant peripheral intraneural electrode. J. Neural Eng. 17, 066008 (2020).

    Article  Google Scholar 

  46. Guo, J. et al. Highly stretchable, strain sensing hydrogel optical fibers. Adv. Mater. 28, 10244–10249 (2016).

    Article  CAS  Google Scholar 

  47. Kahlert, H. in Electroanalytical Methods (eds Fritz Scholz et al.) Ch. 15 (Springer Berlin Heidelberg, 2010).

  48. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank K. Watters for scientific editing of the manuscript. This work was supported by the US Air Force Office of Scientific Research (FA9550-18-1-0503, FA9550-20-1-0387), the National Science Foundation (NSF DMR-2105321, NSF CBET-2128140, NSF MPS-2121044) and the US Army Research Office (W911NF-21-1-0090). A.P. acknowledges support from the Materials Research Science and Engineering Center-funded Graduate Research Fellowship (NSF DMR-2011854). This work made use of the Pritzker Nanofabrication Facility at the Pritzker School of Molecular Engineering at the University of Chicago, which receives support from the Soft and Hybrid Nanotechnology Experimental (SHyNE) Resource (NSF ECCS-2025633), a node of the National Science Foundation’s National Nanotechnology Coordinated Infrastructure; the Scanning Probe Imaging and Development facility of the Northwestern University Atomic and Nanoscale Characterization Experimental Center, which has received support from the SHyNE Resource (NSF ECCS-2025633); the International Institute for Nanotechnology; and Northwestern’s MRSEC programme (NSF DMR-1720139). We acknowledge the MRSEC Shared User Facilities at the University of Chicago (NSF DMR-1420709) and the shared facilities at the University of Chicago Materials Research Science and Engineering Center, supported by the National Science Foundation under award number DMR-2011854. We acknowledge the support of J. Jureller with imaging and materials characterization. A.P. thanks G. Olack for assistance with STEM sample preparation using focused ion beam milling. We thank F. Shi for the help on the STEM imaging; this work made use of instruments in the Electron Microscopy Service (Research Resources Center, University of Illinois Chicago).

Author information

Authors and Affiliations

Authors

Contributions

B.T. supervised the research. A.P. and B.T. conceived the nanoporous/non-porous heterojunction concept. M.Y.R. initiated the project, made the initial observations and performed preliminary experiments. A.P. performed the majority of the experiments and data collection. J.S., P.L., Y.L. and J.P. assisted with the material characterization. J.Y. assisted with the in vivo experiments. A.P. wrote the computer code for data analysis. A.P. and M.Y.R. prepared the manuscript with input from all other authors.

Corresponding authors

Correspondence to Bozhi Tian or Menahem Y. Rotenberg.

Ethics declarations

Competing interests

University of Chicago filed provisional patent applications for the synthesis of porous silicon materials and their applications to biomodulation. Inventors: B.T., A.P. and M.Y.R. All remaining authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Silvestro Micera, Nicolas Voelcker and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–34, descriptions of Supplementary Videos 1–4, Methods and References.

Reporting Summary.

Supplementary Video 1

Laser pacing of an isolated heart.

Supplementary Video 2

Heart pacing and control conditions.

Supplementary Video 3

Optical stimulation of a sciatic nerve.

Supplementary Video 4

Stimulation of a sciatic nerve through an optical fibre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Prominski, A., Shi, J., Li, P. et al. Porosity-based heterojunctions enable leadless optoelectronic modulation of tissues. Nat. Mater. 21, 647–655 (2022). https://doi.org/10.1038/s41563-022-01249-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01249-7

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing