Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Multiscale hierarchical structures from a nanocluster mesophase

Abstract

Spontaneous hierarchical self-organization of nanometre-scale subunits into higher-level complex structures is ubiquitous in nature. The creation of synthetic nanomaterials that mimic the self-organization of complex superstructures commonly seen in biomolecules has proved challenging due to the lack of biomolecule-like building blocks that feature versatile, programmable interactions to render structural complexity. In this study, highly aligned structures are obtained from an organic–inorganic mesophase composed of monodisperse Cd37S18 magic-size cluster building blocks. Impressively, structural alignment spans over six orders of magnitude in length scale: nanoscale magic-size clusters arrange into a hexagonal geometry organized inside micrometre-sized filaments; self-assembly of these filaments leads to fibres that then organize into uniform arrays of centimetre-scale bands with well-defined surface periodicity. Enhanced patterning can be achieved by controlling processing conditions, resulting in bullseye and ‘zigzag’ stacking patterns with periodicity in two directions. Overall, we demonstrate that colloidal nanomaterials can exhibit a high level of self-organization behaviour at macroscopic-length scales.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Hierarchical self-assembly of 1.5 nm MSCs into centimetre-scale aligned bands.
Fig. 2: Method and mechanism for patterning of aligned films using different geometric confinements.
Fig. 3: Characterization of hierarchically patterned thin films.
Fig. 4: Tuning of thin film morphology through solvent evaporation rate and concentration.
Fig. 5: Optical properties of thin films.

Data availability

The data supporting the findings of this study are available within the paper, and other findings of this study are available from the corresponding authors upon reasonable request.

References

  1. Begley, M. R., Gianola, D. S. & Ray, T. R. Bridging functional nanocomposites to robust macroscale devices. Science 364, eaav4299 (2019).

    CAS  Article  Google Scholar 

  2. Boles, M. A., Engel, M. & Talapin, D. V. Self-assembly of colloidal nanocrystals: from intricate structures to functional materials. Chem. Rev. 116, 11220–11289 (2016).

    CAS  Article  Google Scholar 

  3. Liu, Y.-H., Wang, F., Wang, Y., Gibbons, P. C. & Buhro, W. E. Lamellar assembly of cadmium selenide nanoclusters into quantum belts. J. Am. Chem. Soc. 133, 17005–17013 (2011).

    CAS  Article  Google Scholar 

  4. Williamson, C. B. et al. Chemically reversible isomerization of inorganic clusters. Science 363, 731–735 (2019).

    Article  Google Scholar 

  5. Grzelczak, M., Vermant, J., Furst, E. M. & Liz-Marzán, L. M. Directed self-assembly of nanoparticles. ACS Nano 4, 3591–3605 (2010).

    CAS  Article  Google Scholar 

  6. Fan, J. A. et al. Self-assembled plasmonic nanoparticle clusters. Science 328, 1135–1138 (2010).

    CAS  Article  Google Scholar 

  7. Vukusic, P. & Sambles, J. R. Photonic structures in biology. Nature 424, 852–855 (2003).

    CAS  Article  Google Scholar 

  8. Denton, E. Reflectors in fishes. Sci. Am. 224, 64–75. (1971).

    Article  Google Scholar 

  9. Winfree, E., Liu, F., Wenzler, L. A. & Seeman, N. C. Design and self-assembly of two-dimensional DNA crystals. Nature 394, 539–544 (1998).

    CAS  Article  Google Scholar 

  10. Ball, P. The Self-Made Tapestry: Pattern Formation in Nature (Oxford Univ. Press, 2001).

  11. Szustakiewicz, P. et al. Supramolecular chirality synchronization in thin films of plasmonic nanocomposites. ACS Nano 14, 12918–12928 (2020).

    CAS  Article  Google Scholar 

  12. Jones, A. C. Molecular design of improved precursors for the MOCVD of electroceramic oxides. J. Mater. Chem. 12, 2576–2590 (2002).

    CAS  Article  Google Scholar 

  13. Lagerwall, J. P. F. et al. Cellulose nanocrystal-based materials: from liquid crystal self-assembly and glass formation to multifunctional thin films. NPG Asia Mater. 6, e80 (2014).

    CAS  Article  Google Scholar 

  14. Mohammadi, E. et al. Dynamic-template-directed multiscale assembly for large-area coating of highly-aligned conjugated polymer thin films. Nat. Commun. 8, 16070 (2017).

    CAS  Article  Google Scholar 

  15. Bangsund, J. S. et al. Formation of aligned periodic patterns during the crystallization of organic semiconductor thin films. Nat. Mater. 18, 725–731 (2019).

    CAS  Article  Google Scholar 

  16. Alivisatos, A. P. Perspectives on the physical chemistry of semiconductor nanocrystals. J. Phys. Chem. 100, 13226–13239 (1996).

    CAS  Article  Google Scholar 

  17. Yin, Y. & Alivisatos, A. P. Colloidal nanocrystal synthesis and the organic–inorganic interface. Nature 437, 664–670 (2005).

    CAS  Article  Google Scholar 

  18. Boneschanscher, M. P. et al. Long-range orientation and atomic attachment of nanocrystals in 2D honeycomb superlattices. Science 344, 1377–1380 (2014).

    CAS  Article  Google Scholar 

  19. Geuchies, J. J. et al. In situ study of the formation mechanism of two-dimensional superlattices from PbSe nanocrystals. Nat. Mater. 15, 1248–1254 (2016).

    CAS  Article  Google Scholar 

  20. Alivisatos, A. P. et al. Organization of ‘nanocrystal molecules’ using DNA. Nature 382, 609–611 (1996).

    CAS  Article  Google Scholar 

  21. Mirkin, C. A., Letsinger, R. L., Mucic, R. C., Storhoff, J. J. & DNA-Based, A. Method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    CAS  Article  Google Scholar 

  22. Wang, S. et al. Colloidal crystal engineering with metal–organic framework nanoparticles and DNA. Nat. Commun. 11, 2495 (2020).

    CAS  Article  Google Scholar 

  23. Heuer-Jungemann, A. et al. The role of ligands in the chemical synthesis and applications of inorganic nanoparticles. Chem. Rev. 119, 4819–4880 (2019).

    CAS  Article  Google Scholar 

  24. Nevers, D. R. et al. Mesophase formation stabilizes high-purity magic-sized clusters. J. Am. Chem. Soc. 140, 3652–3662 (2018).

    CAS  Article  Google Scholar 

  25. Baek, W. et al. Highly luminescent and catalytically active suprastructures of magic-sized semiconductor nanoclusters. Nat. Mater. 20, 650–657 (2021).

    CAS  Article  Google Scholar 

  26. Nevers, D. R., Williamson, C. B., Hanrath, T. & Robinson, R. D. Surface chemistry of cadmium sulfide magic-sized clusters: a window into ligand–nanoparticle interactions. Chem. Commun. 53, 2866–2869 (2017).

    CAS  Article  Google Scholar 

  27. Zhu, C., Lu, Y., Jiang, L. & Yu, Y. Liquid crystal soft actuators and robots toward mixed reality. Adv. Funct. Mater. 31, 2009835 (2021).

    CAS  Article  Google Scholar 

  28. Bishop, K. J. M., Wilmer, C. E., Soh, S. & Grzybowski, B. A. Nanoscale forces and their uses in self-assembly. Small 5, 1600–1630 (2009).

    CAS  Article  Google Scholar 

  29. Schapotschnikow, P. & Vlugt, T. J. H. Understanding interactions between capped nanocrystals: three-body and chain packing effects. J. Chem. Phys. 131, 124705 (2009).

    Article  Google Scholar 

  30. Tan, S. F., Chee, S. W., Lin, G. & Mirsaidov, U. Direct observation of interactions between nanoparticles and nanoparticle self-assembly in solution. Acc. Chem. Res. 50, 1303–1312 (2017).

    CAS  Article  Google Scholar 

  31. Blyholder, G., Adhikar, C. & Proctor, A. Structure and orientation of oleic acid adsorbed onto silica gel. Colloids Surf. A 105, 151–158 (1995).

    CAS  Article  Google Scholar 

  32. Kumar, A. & Molinero, V. Self-assembly of mesophases from nanoparticles. J. Phys. Chem. Lett. 8, 5053–5058 (2017).

    CAS  Article  Google Scholar 

  33. Viney, C. & Putnam, W. S. The banded microstructure of sheared liquid-crystalline polymers. Polymer 36, 1731–1741 (1995).

    CAS  Article  Google Scholar 

  34. Hamdi, R., Petriashvili, G., De Santo, M. P., Lombardo, G. & Barberi, R. Electrically controlled 1D and 2D cholesteric liquid crystal gratings. Mol. Cryst. Liq. Cryst. 553, 97–102 (2012).

    CAS  Article  Google Scholar 

  35. Godinho, M. H., Fonseca, J. G., Ribeiro, A. C., Melo, L. V. & Brogueira, P. Atomic force microscopy study of hydroxypropylcellulose films prepared from liquid crystalline aqueous solutions. Macromolecules 35, 5932–5936 (2002).

    CAS  Article  Google Scholar 

  36. Chung, W.-J. et al. Biomimetic self-templating supramolecular structures. Nature 478, 364–368 (2011).

    CAS  Article  Google Scholar 

  37. Kim, S. H., Misner, M. J., Xu, T., Kimura, M. & Russell, T. P. Highly oriented and ordered arrays from block copolymers via solvent evaporation. Adv. Mater. 16, 226–231 (2004).

    CAS  Article  Google Scholar 

  38. Grason, G. M. & Bruinsma, R. F. Chirality and equilibrium biopolymer bundles. Phys. Rev. Lett. 99, 098101 (2007).

    Article  Google Scholar 

  39. Grason, G. M. Braided bundles and compact coils: the structure and thermodynamics of hexagonally packed chiral filament assemblies. Phys. Rev. E 79, 041919 (2009).

    Article  Google Scholar 

  40. Yu, W. W. & Peng, X. Formation of high-quality CdS and other II–VI semiconductor nanocrystals in noncoordinating solvents: tunable reactivity of monomers. Angew. Chem. Int. Ed. Engl. 41, 2368–2371 (2002).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the National Science Foundation (NSF) under award numbers CHE-1507753, CHE-2003586, CMMI-1941135, CHE-1665305 and DMR-1809429. Electron microscopy was supported by the NSF under award number DMR-1654596. This work was partially supported by the Cornell Center for Materials Research and made use of the Cornell Center for Materials Research shared facilities, with funding from the the NSF MRSEC programme (number DMR-1719875). R.S.S. acknowledges financial support from the NSF Graduate Research Fellowship Programme under grant no. DGE-1650441. From the Department of Chemical and Biomolecular Engineering at Cornell University, we thank Y. Cheng for AFM analysis and K. Niccum and M. Johnson for their pioneering work.

Author information

Authors and Affiliations

Authors

Contributions

H.H. and S.K. synthesized high-quality MSCs and thin films used in the main studies. H.H., S.K., C.B.W. and D.R.N. performed OM and POM. H.H. performed atomic force microscopy, scanning electron microscopy and UV-vis absorption spectroscopy. S.K. conducted laser diffraction experiments, simulations, and optical analysis. H.H. and Y.Y. measured circular and LD spectroscopy and carried out TEM imaging. B.H.S. and L.F.K. carried out high-resolution STEM. R.S.S. and J.D. contributed to the modelling and understanding of how the strain energy of twisting leads to monodisperse cable thickness. M.X. synthesized and prepared thin films from CdOl nanoclusters and CdS nanoparticles. O.V. calculated dipoles and dipole–dipole interactions between MSCs. S.J.W. contributed the theoretical model for the self-assembly mechanism. R.D.R. and T.H. conceived this project, supervised and guided the design, analysis and interpretation and wrote the manuscript. All authors contributed to the interpretation of results and preparation of the manuscript.

Corresponding authors

Correspondence to Tobias Hanrath or Richard D. Robinson.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–40 and Table 1.

Supplementary Video 1

Alteration in surface texture of thin film following change of focal plane.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Han, H., Kallakuri, S., Yao, Y. et al. Multiscale hierarchical structures from a nanocluster mesophase. Nat. Mater. 21, 518–525 (2022). https://doi.org/10.1038/s41563-022-01223-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01223-3

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing