Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Lithium superionic conductors with corner-sharing frameworks

Abstract

Superionic lithium conductivity has only been discovered in a few classes of materials, mostly found in thiophosphates and rarely in oxides. Herein, we reveal that corner-sharing connectivity of the oxide crystal structure framework promotes superionic conductivity, which we rationalize from the distorted lithium environment and reduced interaction between lithium and non-lithium cations. By performing a high-throughput search for materials with this feature, we discover ten new oxide frameworks predicted to exhibit superionic conductivity—from which we experimentally demonstrate LiGa(SeO3)2 with a bulk ionic conductivity of 0.11 mS cm−1 and an activation energy of 0.17 eV. Our findings provide insight into the factors that govern fast lithium mobility in oxide materials and will accelerate the development of new oxide electrolytes for all-solid-state batteries.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structures of known superionic conductors with CS frameworks.
Fig. 2: Screening for new superionic conductors with a CS framework and experimental verification of LiGa(SeO3)2.
Fig. 3: Lithium environment in oxide materials with 2,822 CS and 5,750 non-CS frameworks.
Fig. 4: Effect of distorted lithium environment on the energy landscape.
Fig. 5: Structural features of CS framework and their RR channels.

Similar content being viewed by others

Data availability

All relevant data within the article are available from the corresponding author upon reasonable request. Source data are provided with this paper and within the Supplementary Information.

Code availability

A sample code to perform our analysis on the geometry of tetrahedral/octahedral environment is provided in the Supplementary Information.

References

  1. Schmuch, R., Wagner, R., Hörpel, G., Placke, T. & Winter, M. Performance and cost of materials for lithium-based rechargeable automotive batteries. Nat. Energy 3, 267–278 (2018).

    Article  CAS  Google Scholar 

  2. Randau, S. et al. Benchmarking the performance of all-solid-state lithium batteries. Nat. Energy https://doi.org/10.1038/s41560-020-0565-1 (2020).

  3. Famprikis, T., Canepa, P., Dawson, J. A., Islam, M. S. & Masquelier, C. Fundamentals of inorganic solid-state electrolytes for batteries. Nat. Mater. https://doi.org/10.1038/s41563-019-0431-3 (2019).

  4. Nam, Y. J., Oh, D. Y., Jung, S. H. & Jung, Y. S. Toward practical all-solid-state lithium-ion batteries with high energy density and safety: comparative study for electrodes fabricated by dry- and slurry-mixing processes. J. Power Sources 375, 93–101 (2018).

    Article  CAS  Google Scholar 

  5. Barroso-Luque, L., Tu, Q. & Ceder, G. An analysis of solid-state electrodeposition-induced metal plastic flow and predictions of stress states in solid ionic conductor defects. J. Electrochem. Soc. 167, 020534 (2020).

    Article  CAS  Google Scholar 

  6. Kamaya, N. et al. A lithium superionic conductor. Nat. Mater. 10, 682–686 (2011).

    Article  CAS  Google Scholar 

  7. Seino, Y., Ota, T., Takada, K., Hayashi, A. & Tatsumisago, M. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 7, 627–631 (2014).

    Article  CAS  Google Scholar 

  8. Zhou, L., Assoud, A., Zhang, Q., Wu, X. & Nazar, L. F. New family of argyrodite thioantimonate lithium superionic conductors. J. Am. Chem. Soc. 141, 19002–19013 (2019).

    Article  CAS  Google Scholar 

  9. Yamane, H. et al. Crystal structure of a superionic conductor, Li7P3S11. Solid State Ion. 178, 1163–1167 (2007).

    Article  CAS  Google Scholar 

  10. Richards, W. D., Miara, L. J., Wang, Y., Kim, J. C. & Ceder, G. Interface stability in solid-state batteries. Chem. Mater. 28, 266–273 (2016).

    Article  CAS  Google Scholar 

  11. Xiao, Y. et al. Understanding interface stability in solid-state batteries. Nat. Rev. Mater. https://doi.org/10.1038/s41578-019-0157-5 (2019).

  12. Wood, K. N. et al. Operando X-ray photoelectron spectroscopy of solid electrolyte interphase formation and evolution in Li2S-P2S5 solid-state electrolytes. Nat. Commun. 9, 2490 (2018).

    Article  CAS  Google Scholar 

  13. Wenzel, S. et al. Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chem. Mater. 28, 2400–2407 (2016).

    Article  CAS  Google Scholar 

  14. Lian, P.-J. et al. Inorganic sulfide solid electrolytes for all-solid-state lithium secondary batteries. J. Mater. Chem. A 7, 20540–20557 (2019).

    Article  CAS  Google Scholar 

  15. Xu, X. et al. Li7P3S11 solid electrolyte coating silicon for high-performance lithium-ion batteries. Electrochim. Acta 276, 325–332 (2018).

    Article  CAS  Google Scholar 

  16. Zhang, Z. et al. New horizons for inorganic solid state ion conductors. Energy Environ. Sci. 11, 1945–1976 (2018).

    Article  CAS  Google Scholar 

  17. Aono, H. Ionic conductivity of solid electrolytes based on lithium titanium phosphate. J. Electrochem. Soc. 137, 1023 (1990).

    Article  CAS  Google Scholar 

  18. Murugan, R., Thangadurai, V. & Weppner, W. Fast lithium ion conduction in garnet‐type Li7La3Zr2O12. Angew. Chem. Int. Ed. 46, 7778–7781 (2007).

    Article  CAS  Google Scholar 

  19. Stramare, S., Thangadurai, V. & Weppner, W. Lithium lanthanum titanates: a review. Chem. Mater. 15, 3974–3990 (2003).

    Article  CAS  Google Scholar 

  20. Wang, Y. et al. Design principles for solid-state lithium superionic conductors. Nat. Mater. 14, 1026–1031 (2015).

    Article  CAS  Google Scholar 

  21. Richards, W. D., Wang, Y., Miara, L. J., Kim, J. C. & Ceder, G. Design of Li1+2x Zn1−x PS4, a new lithium ion conductor. Energ. Environ. Sci. 9, 3272–3278 (2016).

    Article  CAS  Google Scholar 

  22. Suzuki, N. et al. Synthesis and electrochemical properties of I¯4 type Li1+2xZn1-xPS4 solid electrolyte. Chem. Mater. https://doi.org/10.1021/acs.chemmater.7b03833 (2018).

  23. Ong, S. P. et al. Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12 (M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energ. Environ. Sci. 6, 148–156 (2012).

    Article  Google Scholar 

  24. Kanno, R., Hata, T., Kawamoto, Y. & Irie, M. Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ion. 130, 97–104 (2000).

    Article  CAS  Google Scholar 

  25. Knauth, P. Inorganic solid Li ion conductors: an overview. Solid State Ion. 180, 911–916 (2009).

    Article  CAS  Google Scholar 

  26. Sendek, A. D. et al. Holistic computational structure screening of more than 12000 candidates for solid lithium-ion conductor materials. Energ. Environ. Sci. 10, 306–320 (2016).

    Article  CAS  Google Scholar 

  27. Sendek, A. D. et al. Machine learning-assisted discovery of solid Li-Ion conducting materials. Chem. Mater. 31, 342–352 (2018).

    Article  CAS  Google Scholar 

  28. Muy, S. et al. High-throughput screening of solid-state Li-ion conductors using lattice-dynamics descriptors. iScience 16, 270–282 (2019).

    Article  CAS  Google Scholar 

  29. Zhang, Y. et al. Unsupervised discovery of solid-state lithium ion conductors. Nat. Commun. 10, 5260 (2019).

    Article  CAS  Google Scholar 

  30. Kahle, L., Marcolongo, A. & Marzari, N. High-throughput computational screening for solid-state Li-ion conductors. Energ. Environ. Sci. https://doi.org/10.1039/c9ee02457c (2020).

  31. He, X. et al. Crystal structural framework of lithium super‐ionic conductors. Adv. Energy Mater. https://doi.org/10.1002/aenm.201902078 (2019).

  32. Arbi, K., Mandal, S., Rojo, J. M. & Sanz, J. Dependence of ionic conductivity on composition of fast ionic conductors Li1+xTi2-xAlx(PO4)3, 0 ≤x≤ 0.7. A parallel NMR and electric impedance study. Chem. Mater. 14, 1091–1097 (2002).

    Article  CAS  Google Scholar 

  33. Kim, J., Kim, J., Avdeev, M., Yun, H. & Kim, S.-J. LiTa2PO8: a fast lithium-ion conductor with new framework structure. J. Mater. Chem. A 6, 22478–22482 (2018).

    Article  CAS  Google Scholar 

  34. Wang, Q. et al. A new lithium‐ion conductor LiTaSiO5: theoretical prediction, materials synthesis, and ionic conductivity. Adv. Funct. Mater. 29, 1904232 (2019).

    Article  CAS  Google Scholar 

  35. Xiong, S. et al. Computation‐guided design of LiTaSiO5, a new lithium ionic conductor with sphene structure. Adv. Energy Mater. 9, 1803821 (2019).

    Article  CAS  Google Scholar 

  36. Hong, H. Y. P. Crystal structure and ionic conductivity of Li14Zn(GeO4)4 and other new Li+ superionic conductors. Mater. Res. Bull. 13, 117–124 (1978).

    Article  CAS  Google Scholar 

  37. Bruce, P. G. & West, A. R. Phase diagram of the LISICON, solid electrolyte system, Li4GeO4 Zn2GeO4. Mater. Res. Bull. 15, 379–385 (1980).

    Article  CAS  Google Scholar 

  38. Jain, A. et al. Commentary: The Materials Project: a materials genome approach to accelerating materials innovation. APL Mater. 1, 011002 (2013).

    Article  CAS  Google Scholar 

  39. Ong, S. P. et al. Python materials genomics (pymatgen): a robust, open-source python library for materials analysis. Comp. Mater. Sci. 68, 314–319 (2013).

    Article  CAS  Google Scholar 

  40. Belsky, A., Hellenbrandt, M., Karen, V. L. & Luksch, P. New developments in the Inorganic Crystal Structure Database (ICSD): accessibility in support of materials research and design. Acta Crystallogr. B: Struct. Sci. https://doi.org/10.1107/s0108768102006948 (2002).

  41. Malik, R., Burch, D., Bazant, M. & Ceder, G. Particle size dependence of the ionic diffusivity. Nano Lett. 10, 4123–4127 (2010).

    Article  CAS  Google Scholar 

  42. Lee, D. W. & Ok, K. M. New alkali-metal gallium selenites, AGa(SeO3)2 (A = Li, Na, K, and Cs): effect of cation size on the framework structures and macroscopic centricities. Inorg. Chem. 52, 5176–5184 (2013).

    Article  CAS  Google Scholar 

  43. Stefano, D. D. et al. Superionic diffusion through frustrated energy landscape. Chem https://doi.org/10.1016/j.chempr.2019.07.001 (2019).

  44. Pinsky, M. & Avnir, D. Continuous symmetry measures. 5. The classical polyhedra. Inorg. Chem. 37, 5575–5582 (1998).

    Article  CAS  Google Scholar 

  45. Ven, A. V. D., Ceder, G., Asta, M. & Tepesch, P. D. First-principles theory of ionic diffusion with nondilute carriers. Phys. Rev. B 64, 184307 (2001).

    Article  CAS  Google Scholar 

  46. Lee, J. et al. Unlocking the potential of cation-disordered oxides for rechargeable lithium batteries. Science 343, 519–522 (2014).

    Article  CAS  Google Scholar 

  47. Zhang, Z. et al. Targeting superionic conductivity by turning on anion rotation at room temperature in fast ion conductors. Matter 2, 1667–1684 (2020).

    Article  Google Scholar 

  48. Hanghofer, I., Gadermaier, B. & Wilkening, H. M. R. Fast rotational dynamics in argyrodite-type Li6PS5X (X: Cl, Br, I) as Seen by 31P nuclear magnetic relaxation—on cation–anion coupled transport in thiophosphates. Chem. Mater. 31, 4591–4597 (2019).

    Article  CAS  Google Scholar 

  49. Zhang, Z., Roy, P.-N., Li, H., Avdeev, M. & Nazar, L. F. Coupled cation-anion dynamics enhances cation mobility in room temperature superionic solid-state electrolytes. J. Amer. Chem. Soc. https://doi.org/10.1021/jacs.9b09343 (2019).

  50. Rong, Z. et al. Fast Mg2+ diffusion in Mo3(PO4)3O for Mg batteries. Chem. Commun. 53, 7998–8001 (2017).

    Article  CAS  Google Scholar 

  51. Delaunay, B. Sur la sphère vide. Bull. Acad. Sci. URSS, VII. Ser. 1934, 793–800 (1934).

    Google Scholar 

  52. Daly, P. W. The Tetrahedron Quality Factors of CSDS (Max-Planck-Institut für Aeronomie, 1994).

  53. Perdew, J. P., Burke, K. & Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865–3868 (1996).

    Article  CAS  Google Scholar 

  54. Blöchl, P. E. Projector augmented-wave method. Phys. Rev. B 50, 17953–17979 (1994).

    Article  Google Scholar 

  55. Kresse, G. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169–11186 (1996).

    Article  CAS  Google Scholar 

  56. Jain, A. et al. Formation enthalpies by mixing GGA and GGA + U calculations. Phys. Rev. B 84, 045115 (2011).

    Article  CAS  Google Scholar 

  57. Miara, L. J., Richards, W. D., Wang, Y. E. & Ceder, G. First-principles studies on cation dopants and electrolyte cathode interphases for lithium garnets. Chem. Mater. 27, 4040–4047 (2015).

    Article  CAS  Google Scholar 

  58. He, X., Zhu, Y., Epstein, A. & Mo, Y. Statistical variances of diffusional properties from ab initio molecular dynamics simulations. NPJ Comput. Mater. 4, 18 (2018).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research utilized the resources of the National Energy Research Scientific Computing Center (NERSC), a US Department of Energy Office of Science User facility operated under contract no. DE-AC02-05CH11231, and the Extreme Science and Engineering Discovery Environment (XSEDE), which is supported by National Science Foundation grant no. ACI-1548562. Work at the Molecular Foundry was supported by the Office of Science, Office of Basic Energy Sciences, of the US Department of Energy under contract no. DE-AC02-05CH11231. K. Jun gratefully acknowledges support from a a Kwanjeong Educational Foundation scholarship.

Author information

Authors and Affiliations

Authors

Contributions

Y.W. initially proposed the concept. K.J. carried out all of the calculations with the help of Y.X. Y.X. implemented the site identifying algorithm. Y.S. synthesized the conductor. Y.S., Y.Z. and R.K. densified the pellet. Y.S. performed the electrochemical characterization and analysed the results with Y.Z., K.J., H.K. and L.J.M. G.C., Y.W. and D.I. supervised the project. K.J., Y.S., Y.W. and G.C. wrote the manuscript with contributions and revisions from all authors.

Corresponding authors

Correspondence to Yan Wang or Gerbrand Ceder.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Martin Wilkening and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1–6, Notes 1–7 and references.

Source data

Source Data Fig. 2

XRD data, EIS data and Arrhenius plot.

Source Data Fig. 3

Distribution of the CSM and volume.

Source Data Fig. 4

Dependence of EKRA on CSM and volume.

Source Data Fig. 5

Polyhedral packing ratio, site ratio and percentile of RR-channel dimensions.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jun, K., Sun, Y., Xiao, Y. et al. Lithium superionic conductors with corner-sharing frameworks. Nat. Mater. 21, 924–931 (2022). https://doi.org/10.1038/s41563-022-01222-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01222-4

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing