Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal

Abstract

Gauge fields play a major role in understanding quantum effects. For example, gauge flux insertion into single unit cells is crucial towards detecting quantum phases and controlling quantum dynamics and classical waves. However, the potential of gauge fields in topological materials studies has not been fully exploited. Here, we experimentally demonstrate artificial gauge flux insertion into a single plaquette of a sonic crystal with a gauge phase ranging from 0 to 2π. We insert the gauge flux through a three-step process of dimensional extension, engineering a screw dislocation and dimensional reduction. Additionally, the single-plaquette gauge flux leads to cyclic spectral flows across multiple bandgaps that manifest as topological boundary states on the plaquette and emerge only when the flux-carrying plaquette encloses the Wannier centres. We termed this phenomenon as the topological Wannier cycle. This work paves the way towards sub-unit-cell gauge flux, enabling future studies on synthetic gauge fields and topological materials.

Your institute does not have access to this article

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Artificial gauge flux insertion in a single plaquette in acoustic systems.
Fig. 2: Topological Wannier cycles: underlying principles.
Fig. 3: Topological Wannier cycles: acoustic model.
Fig. 4: Observation of topological Wannier cycles.
Fig. 5: Visualizing the TBSs and the artificial gauge flux.

Data availability

All relevant data are presented in detail in the manuscript and the Supplementary Information. Additional information is available from the corresponding authors through reasonable request.

Code availability

We use the commercial software COMSOL Multiphysics to perform the acoustic wave simulations and eigenstate calculations based on finite-element methods. Reasonable requests to have the computation details can be addressed to the corresponding authors.

References

  1. Aharonov, Y. & Bohm, D. Significance of electromagnetic potentials in the quantum theory. Phys. Rev. 115, 485–491 (1959).

    Google Scholar 

  2. Laughlin, R. B. Quantized Hall conductivity in two dimensions. Phys. Rev. B 23, 5632(R)–5633(R) (1981).

    Google Scholar 

  3. Halperin, B. I. Quantized Hall conductance, current-carrying edge states, and the existence of extended states in a two-dimensional disordered potential. Phys. Rev. B 25, 2185–2190 (1982).

    Google Scholar 

  4. Wen, X. G. Quantum Field Theory of Many-Body Systems (Oxford Univ. Press, 2004).

  5. Tonomura, A. et al. Observation of Aharonov-Bohm effect by electron holography. Phys. Rev. Lett. 48, 1443–1446 (1982).

    Google Scholar 

  6. Albrecht, C. et al. Evidence of Hofstadter’s fractal energy spectrum in the quantized Hall conductance. Phys. Rev. Lett. 86, 147–150 (2001).

    CAS  Google Scholar 

  7. Geim, A. K., Bending, S. J. & Grigorieva, I. V. Asymmetric scattering and diffraction of two-dimensional electrons at quantized tubes of magnetic flux. Phys. Rev. Lett. 69, 2252–2255 (1992).

    CAS  Google Scholar 

  8. Goldman, N., Juzeliūnas, G., Öhberg, P. & Spielman, I. B. Light-induced gauge fields for ultracold atoms. Rep. Prog. Phys. 77, 126401 (2014).

    CAS  Google Scholar 

  9. Roushan, P. et al. Chiral ground-state currents of interacting photons in a synthetic magnetic field. Nat. Phys. 13, 146–151 (2017).

    CAS  Google Scholar 

  10. Aidelsburger, M., Nascimbene, S. & Goldman, N. Artificial gauge fields in materials and engineered systems. C. R. Physique 19, 394–432 (2018).

    CAS  Google Scholar 

  11. Lienhard, V. et al. Realization of a density-dependent Peierls phase in a synthetic, spin-orbit coupled Rydberg system. Phys. Rev. X 10, 021031 (2020).

    CAS  Google Scholar 

  12. Fang, K., Yu, Z. & Fan, S. Realizing effective magnetic field for photons by controlling the phase of dynamic modulation. Nat. Photon. 6, 782–787 (2012).

    CAS  Google Scholar 

  13. Rechtsman, M. C. et al. Strain-induced pseudomagnetic field and photonic Landau levels in dielectric structures. Nat. Photon. 7, 153–158 (2013).

    CAS  Google Scholar 

  14. Mittal, S., Ganeshan, S., Fan, J., Vaezi, A. & Hafezi, M. Measurement of topological invariants in a 2D photonic system. Nat. Photon. 10, 180–183 (2016).

    CAS  Google Scholar 

  15. Jia, H. et al. Observation of chiral zero mode in inhomogeneous three-dimensional Weyl metamaterials. Science 363, 148–151 (2019).

    CAS  Google Scholar 

  16. Lumer, Y. et al. Light guiding by artificial gauge fields. Nat. Photon. 13, 339–345 (2019).

    CAS  Google Scholar 

  17. Xiao, M., Chen, W.-J., He, W.-Y. & Chan, C. T. Artificial gauge flux and Weyl points in acoustic systems. Nat. Phys. 11, 920–924 (2015).

    CAS  Google Scholar 

  18. Fang, K. et al. Generalized non-reciprocity in an optomechanical circuit via synthetic magnetism and reservoir engineering. Nat. Phys. 13, 465–471 (2017).

    CAS  Google Scholar 

  19. Wen, X. et al. Acoustic Landau quantization and quantum-Hall-like edge states. Nat. Phys. 15, 352–356 (2019).

    CAS  Google Scholar 

  20. Peri, V., Serra-Garcia, M., Ilan, R. & Huber, S. D. Axial-field-induced chiral channels in an acoustic Weyl system. Nat. Phys. 15, 357–361 (2019).

    CAS  Google Scholar 

  21. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Google Scholar 

  22. Ma, G., Xiao, M. & Chan, C. T. Topological phases in acoustic and mechanical systems. Nat. Rev. Phys. 1, 281–294 (2019).

    Google Scholar 

  23. Ozawa, T. et al. Topological photonics. Rev. Mod. Phys. 91, 015006 (2019).

    CAS  Google Scholar 

  24. van Miert, G. & Ortix, C. Higher-order topological insulators protected by inversion and rotoinversion symmetries. Phys. Rev. B 98, 081110(R) (2018).

    Google Scholar 

  25. Benalcazar, W. A., Li, T. & Hughes, T. L. Quantization of fractional corner charge in Cn-symmetric higher-order topological crystalline insulators. Phys. Rev. B 99, 245151 (2019).

    CAS  Google Scholar 

  26. Gao, J. et al. Unconventional materials: the mismatch between electronic charge centers and atomic positions. Preprint at https://arXiv.org/abs/2106.08035 (2022).

  27. Xu, Y. et al. Filling-enforced obstructed atomic insulators. Preprint at https://arXiv.org/abs/2106.10276 (2021).

  28. Liu, F. & Wakabayashi, K. Novel topological phase with a zero Berry curvature. Phys. Rev. Lett. 118, 076803 (2017).

    Google Scholar 

  29. Xie, B.-Y. et al. Second-order photonic topological insulator with corner states. Phys. Rev. B 98, 205147 (2018).

    CAS  Google Scholar 

  30. Xie, B.-Y. et al. Higher-order band topology. Nat. Rev. Phys. 3, 520–532 (2021).

    Google Scholar 

  31. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Google Scholar 

  32. Turner, A. M., Zhang, Y. & Vishwanath, A. Entanglement and inversion symmetry in topological insulators. Phys. Rev. B 82, 241102(R) (2010).

    Google Scholar 

  33. Song, Z.-D., Elcoro, L. & Bernevig, B. A. Twisted bulk-boundary correspondence of fragile topology. Science 367, 794–797 (2020).

    CAS  Google Scholar 

  34. Peri, V. et al. Experimental characterization of fragile topology in an acoustic metamaterial. Science 367, 797–800 (2020).

    CAS  Google Scholar 

  35. van Miert, G. & Ortix, C. On the topological immunity of corner states in two-dimensional crystalline insulators. npj Quantum Mater. 5, 63 (2020).

    Google Scholar 

  36. Peterson, C. W. et al. A fractional corner anomaly reveals higher-order topology. Science 368, 1114–1118 (2020).

    CAS  Google Scholar 

  37. Ran, Y., Zhang, Y. & Vishwanath, A. One-dimensional topologically protected modes in topological insulators with lattice dislocations. Nat. Phys. 5, 298–303 (2009).

    CAS  Google Scholar 

  38. Teo, J. C. Y. & Kane, C. L. Topological defects and gapless modes in insulators and superconductors. Phys. Rev. B 82, 115120 (2010).

    Google Scholar 

  39. Juričić, V., Mesaros, A., Slager, R.-J. & Zaanen, J. Universal probes of two-dimensional topological insulators: dislocation and π-flux. Phys. Rev. Lett. 108, 106403 (2012).

    Google Scholar 

  40. de Juan, F., Rüegg, A. & Lee, D.-H. Bulk-defect correspondence in particle-hole symmetric insulators and semimetals. Phys. Rev. B 89, 161117(R) (2014).

    Google Scholar 

  41. Slager, R.-J., Mesaros, A., Juričić, V. & Zaanen, J. Interplay between electronic topology and crystal symmetry: dislocation-line modes in topological band insulators. Phys. Rev. B 90, 241403(R) (2014).

    Google Scholar 

  42. van Miert, G. & Ortix, C. Dislocation charges reveal two-dimensional topological crystalline invariants. Phys. Rev. B 97, 201111(R) (2018).

    Google Scholar 

  43. Queiroz, R., Fulga, I. C., Avraham, N., Beidenkopf, H. & Cano, J. Partial lattice defects in higher-order topological insulators. Phys. Rev. Lett. 123, 266802 (2019).

    CAS  Google Scholar 

  44. Slager, R.-J. The translational side of topological band insulators. J. Phys. Chem. Solids 128, 24–38 (2019).

    CAS  Google Scholar 

  45. Roy, B. & Juričić, V. Dislocation as a bulk probe of higher-order topological insulators. Phys. Rev. Res. 3, 033107 (2021).

    CAS  Google Scholar 

  46. Paulose, J., Chen, B. G. & Vitelli, V. Topological modes bound to dislocations in mechanical metamaterials. Nat. Phys. 11, 153–156 (2015).

    CAS  Google Scholar 

  47. Li, F.-F. et al. Topological light-trapping on a dislocation. Nat. Commun. 9, 2462 (2018).

    Google Scholar 

  48. Nayak, A. K. et al. Resolving the topological classification of bismuth with topological defects. Sci. Adv. 5, eaax6996 (2019).

    CAS  Google Scholar 

  49. Mukherjee, S. et al. Experimental observation of Aharonov-Bohm cages in photonic lattices. Phys. Rev. Lett. 121, 075502 (2018).

    Google Scholar 

  50. Lustig, E. & Segev, M. Topological photonics in synthetic dimensions. Adv. Opt. Photon. 13, 426–461 (2021).

    Google Scholar 

Download references

Acknowledgements

Z.-K.L., B.J., Y.L., S.-Q.W. and J.-H.J. are supported by the National Natural Science Foundation of China (grant no. 12074281), the Jiangsu Province Distinguished Professor Funding and the Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province, Soochow University. J.-H.J. thanks Z.-D. Song for many helpful discussions. He also thanks Z. H. Hang for sharing his laboratory for part of the measurements, and the Huazhong University of Science and Technology, where a large part of the manuscript was finalized, for their hospitality. Y.W. and F.L. are supported by the Guangzhou Basic and Applied Research Foundation (no. 202102020349), the Natural Science Foundation of Guangdong Province (grant no. 2020A1515010549) and China Postdoctoral Science Foundation (grant no. 2020M672615).

Author information

Authors and Affiliations

Authors

Contributions

J.-H.J. initiated the project and guided the research. J.-H.J. and Z.-K.L. established the theory. Y.W., Z.-K.L., B.J. and Y.L. performed the numerical calculations and simulations. Y.W., Z.-K.L., S.-Q.W., J.-H.J. and F.L. designed and performed the experiments. All the authors contributed to the discussions of the results and the manuscript preparation. J.-H.J., Z.-K.L. and Y.W. wrote the manuscript and the Supplementary Information.

Corresponding authors

Correspondence to Ying Wu, Feng Li or Jian-Hua Jiang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Marc Serra-Garcia and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–22, Tables 1 and 2 and Discussion.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lin, ZK., Wu, Y., Jiang, B. et al. Topological Wannier cycles induced by sub-unit-cell artificial gauge flux in a sonic crystal. Nat. Mater. 21, 430–437 (2022). https://doi.org/10.1038/s41563-022-01200-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01200-w

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing