Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution

Abstract

The oxygen evolution reaction is central to making chemicals and energy carriers using electrons. Combining the great tunability of enzymatic systems with known oxide-based catalysts can create breakthrough opportunities to achieve both high activity and stability. Here we report a series of metal hydroxide–organic frameworks (MHOFs) synthesized by transforming layered hydroxides into two-dimensional sheets crosslinked using aromatic carboxylate linkers. MHOFs act as a tunable catalytic platform for the oxygen evolution reaction, where the π–π interactions between adjacent stacked linkers dictate stability, while the nature of transition metals in the hydroxides modulates catalytic activity. Substituting Ni-based MHOFs with acidic cations or electron-withdrawing linkers enhances oxygen evolution reaction activity by over three orders of magnitude per metal site, with Fe substitution achieving a mass activity of 80 A \({\rm{g}}_{\rm{catalyst}}^{-1}\) at 0.3 V overpotential for 20 h. Density functional theory calculations correlate the enhanced oxygen evolution reaction activity with the MHOF-based modulation of Ni redox and the optimized binding of oxygenated intermediates.

This is a preview of subscription content

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Structural design and stability optimization of MHOFs.
Fig. 2: Synthesis of MHOF nanosheets.
Fig. 3: Tuning the electronic structure of M/Ni2(OH)2(L4) nanosheets.
Fig. 4: Tuning the OER activity of M/Ni2(OH)2(L4) nanosheets.
Fig. 5: Activity optimization of Fe/Ni2(OH)2(L4) nanosheets.

Data availability

The X-ray crystallographic data for structures reported in this article have been deposited at the Cambridge Crystallographic Data Centre (CCDC) under deposition numbers CCDC 2120871, 2120868, 2120869 and 2120870 for Ni2(OH)2(L1), Ni2(OH)2(L2), Ni2(OH)2(L3) and Ni2(OH)2(L4), respectively, which can be obtained from the CCDC via https://www.ccdc.cam.ac.uk/structures/. All other data that support the results in this study are available from the corresponding authors upon reasonable request.

References

  1. Gray, H. B. Powering the planet with solar fuel. Nat. Chem. 1, 7 (2009).

    CAS  Article  Google Scholar 

  2. Wei, C. et al. Recommended practices and benchmark activity for hydrogen and oxygen electrocatalysis in water splitting and fuel cells. Adv. Mater. 31, 1806296 (2019).

    Article  CAS  Google Scholar 

  3. Enman, L. J., Burke, M. S., Batchellor, A. S. & Boettcher, S. W. Effects of intentionally incorporated metal cations on the oxygen evolution electrocatalytic activity of nickel (oxy)hydroxide in alkaline media. ACS Catal. 6, 2416–2423 (2016).

    CAS  Article  Google Scholar 

  4. Grimaud, A. et al. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9, 457–465 (2017).

    CAS  Article  Google Scholar 

  5. Man, I. C. et al. Universality in oxygen evolution electrocatalysis on oxide surfaces. ChemCatChem 3, 1159–1165 (2011).

    CAS  Article  Google Scholar 

  6. Suntivich, J., May, K. J., Gasteiger, H. A., Goodenough, J. B. & Shao-Horn, Y. A perovskite oxide optimized for molecular orbital principles. Science 334, 1383–1385 (2011).

    CAS  Article  Google Scholar 

  7. Grimaud, A. et al. Double perovskites as a family of highly active catalysts for oxygen evolution in alkaline solution. Nat. Commun. 4, 2439 (2013).

    Article  CAS  Google Scholar 

  8. Dau, H. et al. The mechanism of water oxidation: from electrolysis via homogeneous to biological catalysis. ChemCatChem 2, 724–761 (2010).

    CAS  Article  Google Scholar 

  9. Hong, W. T. et al. Toward the rational design of non-precious transition metal oxides for oxygen electrocatalysis. Energy Environ. Sci. 8, 1404–1427 (2015).

    CAS  Article  Google Scholar 

  10. Umena, Y., Kawakami, K., Shen, J.-R. & Kamiya, N. Crystal structure of oxygen-evolving photosystem II at a resolution of 1.9 Å. Nature 473, 55–60 (2011).

    CAS  Article  Google Scholar 

  11. Ferreira, K. N., Iverson, T. M., Maghlaoui, K., Barber, J. & Iwata, S. Architecture of the photosynthetic oxygen-evolving center. Science 303, 1831–1838 (2004).

    CAS  Article  Google Scholar 

  12. Tsui, E. Y. & Agapie, T. Reduction potentials of heterometallic manganese–oxido cubane complexes modulated by redox-inactive metals. Proc. Natl Acad. Sci. USA 110, 10084–10088 (2013).

    CAS  Article  Google Scholar 

  13. Tsui, E. Y., Tran, R., Yano, J. & Agapie, T. Redox-inactive metals modulate the reduction potential in heterometallic manganese–oxido clusters. Nat. Chem. 5, 293–299 (2013).

    CAS  Article  Google Scholar 

  14. Kuznetsov, D. A. et al. Tuning redox transitions via inductive effect in metal oxides and complexes, and implications in oxygen electrocatalysis. Joule 2, 225–244 (2018).

    CAS  Article  Google Scholar 

  15. Xiao, D. J., Oktawiec, J., Milner, P. J. & Long, J. R. Pore environment effects on catalytic cyclohexane oxidation in expanded Fe2(dobdc) analogues. J. Am. Chem. Soc. 138, 14371–14379 (2016).

    CAS  Article  Google Scholar 

  16. Smith, P. T., Kim, Y., Benke, B. P., Kim, K. & Chang, C. J. Supramolecular tuning enables selective oxygen reduction catalyzed by cobalt porphyrins for direct electrosynthesis of hydrogen peroxide. Angew. Chem. Int. Ed. 59, 4902–4907 (2020).

    CAS  Article  Google Scholar 

  17. Nguyen, A. I. et al. Manganese–cobalt oxido cubanes relevant to manganese-doped water oxidation catalysts. J. Am. Chem. Soc. 139, 5579–5587 (2017).

    CAS  Article  Google Scholar 

  18. Jee, A.-Y., Cho, Y.-K., Granick, S. & Tlusty, T. Catalytic enzymes are active matter. Proc. Natl Acad. Sci. USA 115, E10812–E10821 (2018).

    CAS  Google Scholar 

  19. Mozhaev, V. V. in Stability and Stabilization of Biocatalysts (ed. Ballesteros, A.) 355–363 (Elsevier Science, 1998).

  20. Kalmutzki, M. J., Hanikel, N. & Yaghi, O. M. Secondary building units as the turning point in the development of the reticular chemistry of MOFs. Sci. Adv. 4, eaat9180 (2018).

    CAS  Article  Google Scholar 

  21. Jiao, L., Wang, Y., Jiang, H.-L. & Xu, Q. Metal–organic frameworks as platforms for catalytic applications. Adv. Mater. 30, 1703663 (2018).

    Article  CAS  Google Scholar 

  22. Pullen, S., Fei, H., Orthaber, A., Cohen, S. M. & Ott, S. Enhanced photochemical hydrogen production by a molecular diiron catalyst incorporated into a metal–organic framework. J. Am. Chem. Soc. 135, 16997–17003 (2013).

    CAS  Article  Google Scholar 

  23. Jahan, M., Bao, Q. & Loh, K. P. Electrocatalytically active graphene–porphyrin MOF composite for oxygen reduction reaction. J. Am. Chem. Soc. 134, 6707–6713 (2012).

    CAS  Article  Google Scholar 

  24. Kornienko, N. et al. Metal–organic frameworks for electrocatalytic reduction of carbon dioxide. J. Am. Chem. Soc. 137, 14129–14135 (2015).

    CAS  Article  Google Scholar 

  25. Nguyen, A. I. et al. Stabilization of reactive Co4O4 cubane oxygen-evolution catalysts within porous frameworks. Proc. Natl Acad. Sci. USA 116, 11630–11639 (2019).

    CAS  Article  Google Scholar 

  26. Huang, Z.-L. et al. Ab-initio XPRD crystal structure and giant hysteretic effect (Hc = 5.9 T) of a new hybrid terephthalate-based cobalt(II) magnet. Chem. Mater. 12, 2805–2812 (2000).

    CAS  Article  Google Scholar 

  27. Zhao, S. et al. Ultrathin metal–organic framework nanosheets for electrocatalytic oxygen evolution. Nat. Energy 1, 16184 (2016).

    CAS  Article  Google Scholar 

  28. Li, W. et al. Unprecedented high oxygen evolution activity of electrocatalysts derived from surface-mounted metal–organic frameworks. J. Am. Chem. Soc. 141, 5926–5933 (2019).

    CAS  Article  Google Scholar 

  29. Zhao, S. et al. Structural transformation of highly active metal–organic framework electrocatalysts during the oxygen evolution reaction. Nat. Energy 5, 881–890 (2020).

    CAS  Article  Google Scholar 

  30. Zheng, W. & Lee, L. Y. S. Metal–organic frameworks for electrocatalysis: catalyst or precatalyst? ACS Energy Lett. 6, 2838–2843 (2021).

    CAS  Article  Google Scholar 

  31. Bonnet, S. et al. Synthesis of hybrid organo–mineral materials: anionic tetraphenylporphyrins in layered double hydroxides. Chem. Mater. 8, 1962–1968 (1996).

    CAS  Article  Google Scholar 

  32. Leroux, F. et al. Delamination and restacking of layered double hydroxides. J. Mater. Chem. 11, 105–112 (2001).

    CAS  Article  Google Scholar 

  33. Islam, M. & Patel, R. Organic–Inorganic Hybrid Ion-Exchangers and Layered Double Hydroxides: Synthesis, Characterization and Environmental Application (Lambert Academic Publishing, 2009).

  34. Burtch, N. C., Jasuja, H. & Walton, K. S. Water stability and adsorption in metal–organic frameworks. Chem. Rev. 114, 10575–10612 (2014).

    CAS  Article  Google Scholar 

  35. Greczynski, G. & Hultman, L. X-ray photoelectron spectroscopy: towards reliable binding energy referencing. Prog. Mater. Sci. 107, 100591 (2020).

    CAS  Article  Google Scholar 

  36. Wang, Y., Yan, D., El Hankari, S., Zou, Y. & Wang, S. Recent progress on layered double hydroxides and their derivatives for electrocatalytic water splitting. Adv. Sci. 5, 1800064 (2018).

    Article  CAS  Google Scholar 

  37. Dean, J. A. Lange’s Handbook of Chemistry (McGraw-Hill, 1999).

  38. Bockris, J., Reddy, A. & Gamboa-Aldeco, M. in Modern Electrochemistry, 2A: Fundamentals of Electrodics 1175–1187 (Springer, 2000).

  39. Rao, R. R. et al. Operando identification of site-dependent water oxidation activity on ruthenium dioxide single-crystal surfaces. Nat. Catal. 3, 516–525 (2020).

    CAS  Article  Google Scholar 

  40. Friebel, D. et al. Identification of highly active Fe sites in (Ni,Fe)OOH for electrocatalytic water splitting. J. Am. Chem. Soc. 137, 1305–1313 (2015).

    CAS  Article  Google Scholar 

  41. Diaz-Morales, O., Ferrus-Suspedra, D. & Koper, M. T. M. The importance of nickel oxyhydroxide deprotonation on its activity towards electrochemical water oxidation. Chem. Sci. 7, 2639–2645 (2016).

    CAS  Article  Google Scholar 

  42. Xiao, H., Shin, H. & Goddard, W. A. Synergy between Fe and Ni in the optimal performance of (Ni,Fe)OOH catalysts for the oxygen evolution reaction. Proc. Natl Acad. Sci. USA 115, 5872–5877 (2018).

    CAS  Article  Google Scholar 

  43. Dionigi, F. et al. In-situ structure and catalytic mechanism of NiFe and CoFe layered double hydroxides during oxygen evolution. Nat. Commun. 11, 2522 (2020).

    CAS  Article  Google Scholar 

  44. Hu, C. et al. Surface-enhanced Raman spectroscopic evidence of key intermediate species and role of NiFe dual-catalytic center in water oxidation. Angew. Chem. Int. Ed. 60, 19774–19778 (2021).

    CAS  Article  Google Scholar 

  45. Giordano, L. et al. pH dependence of OER activity of oxides: current and future perspectives. Catal. Today 262, 2–10 (2016).

    CAS  Article  Google Scholar 

  46. Gorlin, M. et al. Tracking catalyst redox states and reaction dynamics in Ni–Fe oxyhydroxide oxygen evolution reaction electrocatalysts: the role of catalyst support and electrolyte pH. J. Am. Chem. Soc. 139, 2070–2082 (2017).

    Article  CAS  Google Scholar 

  47. Kuznetsov, D. A., Peng, J., Giordano, L., Román-Leshkov, Y. & Shao-Horn, Y. Bismuth substituted strontium cobalt perovskites for catalyzing oxygen evolution. J. Phys. Chem. C 124, 6562–6570 (2020).

    CAS  Article  Google Scholar 

  48. Lee, Y., Suntivich, J., May, K. J., Perry, E. E. & Shao-Horn, Y. Synthesis and activities of rutile IrO2 and RuO2 nanoparticles for oxygen evolution in acid and alkaline solutions. J. Phys. Chem. Lett. 3, 399–404 (2012).

    CAS  Article  Google Scholar 

  49. Kuai, C. et al. Fully oxidized Ni–Fe layered double hydroxide with 100% exposed active sites for catalyzing oxygen evolution reaction. ACS Catal. 9, 6027–6032 (2019).

    CAS  Article  Google Scholar 

  50. Stoerzinger, K. A., Qiao, L., Biegalski, M. D. & Shao-Horn, Y. Orientation-dependent oxygen evolution activities of rutile IrO2 and RuO2. J. Phys. Chem. Lett. 5, 1636–1641 (2014).

    CAS  Article  Google Scholar 

  51. Mukherjee, P. S., Das, N., Kryschenko, Y. K., Arif, A. M. & Stang, P. J. Design, synthesis, and crystallographic studies of neutral platinum-based macrocycles formed via self-assembly. J. Am. Chem. Soc. 126, 2464–2473 (2004).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Toyota Research Institute through the Accelerated Materials Design and Discovery programme. This work made use of the Materials Research Science and Engineering Centers Shared Experimental Facilities at Massachusetts Institute of Technology supported by the National Science Foundation under award number DMR-1419807, as well as the Helmholtz-Zentrum Dresden-Rossendorf Ion Beam Center TEM facilities. The structural characterization was supported by the CATSS project from the Knut and Alice Wallenberg Foundation (KAW 2016.0072) and the Swedish Research Council (VR, 2017-04321, 2016-04625). This work was performed in part at the Center for Nanoscale Systems, a member of the National Nanotechnology Coordinated Infrastructure Network, which is supported by the National Science Foundation under NSF award number 1541959. The Center for Nanoscale Systems is part of Harvard University. Use of the Stanford Synchrotron Radiation Lightsource, SLAC National Accelerator Laboratory, is supported by the US Department of Energy, Office of Science, Office of Basic Energy Sciences under contract no. DE-AC02-76SF00515. This research used resources of the National Energy Research Scientific Computing Center, a US Department of Energy Office of Science User Facility supported by the Office of Science of the US Department of Energy under contract no. DE-AC02-05CH11231. This work used the Extreme Science and Engineering Discovery Environment, which is supported by National Science Foundation grant number ACI-1548562.

Author information

Authors and Affiliations

Authors

Contributions

Y.S.-H., Y.R.-L., S.Y. and B.C. conceived the original idea. S.Y. performed the synthesis. S.Y., J.P. and B.C. performed the electrochemical measurements and data analysis. J.P. and L.G. conducted the DFT calculations. Z.H., R.H. and X.Z. performed the TEM analysis. A.T.G.-E. and D.S. conducted the X-ray absorption spectroscopy measurements and data analysis. J.P., Y.Z., K.A. and Y.G.Z. performed the XPS, diffuse reflectance infrared Fourier transform spectra, inductively coupled plasma optical emission spectroscopy and scanning electron microscopy measurements. S.Y., J.P., B.C., Y.S.-H. and Y.R.-L. draughted the manuscript. All authors contributed to the revision of the manuscript.

Corresponding authors

Correspondence to Yuriy Román-Leshkov or Yang Shao-Horn.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–20, Notes 1–8 and Methods.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yuan, S., Peng, J., Cai, B. et al. Tunable metal hydroxide–organic frameworks for catalysing oxygen evolution. Nat. Mater. 21, 673–680 (2022). https://doi.org/10.1038/s41563-022-01199-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-022-01199-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing