Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits


Dielectrics with low loss at microwave frequencies are imperative for high-coherence solid-state quantum computing platforms. Here we study the dielectric loss of hexagonal boron nitride (hBN) thin films in the microwave regime by measuring the quality factor of parallel-plate capacitors (PPCs) made of NbSe2–hBN–NbSe2 heterostructures integrated into superconducting circuits. The extracted microwave loss tangent of hBN is bounded to be at most in the mid-10−6 range in the low-temperature, single-photon regime. We integrate hBN PPCs with aluminium Josephson junctions to realize transmon qubits with coherence times reaching 25 μs, consistent with the hBN loss tangent inferred from resonator measurements. The hBN PPC reduces the qubit feature size by approximately two orders of magnitude compared with conventional all-aluminium coplanar transmons. Our results establish hBN as a promising dielectric for building high-coherence quantum circuits with substantially reduced footprint and with a high energy participation that helps to reduce unwanted qubit cross-talk.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Get just this article for as long as you need it


Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Superconducting resonators for characterizing the microwave dielectric loss of hBN.
Fig. 2: Internal quality factor Qi of hBN-coupled LC resonators.
Fig. 3: Transmon qubits shunted by PPCs.
Fig. 4: Characterization of fixed-frequency and flux-tunable transmon qubits shunted by PPCs.

Data availability

The data that supports the findings of this study are available from the corresponding author upon reasonable request and with the cognizance of our US Government sponsors who funded the work.


  1. Kjaergaard, M. et al. Superconducting qubits: current state of play. Annu. Rev. Condens. Matter Phys. 11, 369–395 (2020).

    Article  Google Scholar 

  2. Martinis, J.M. et al. Decoherence in Josephson qubits from dielectric loss. Phys. Rev. Lett. 95, 210503 (2005).

  3. Gambetta, J. M. et al. Investigating surface loss effects in superconducting transmon qubits. IEEE Trans. Appl. Supercond. 27, 1700205 (2016).

    Google Scholar 

  4. Müller, C., Cole, J. H. & Lisenfeld, J. Towards understanding two-level-systems in amorphous solids: insights from quantum circuits. Rep. Prog. Phys. 82, 124501 (2019).

    Article  Google Scholar 

  5. Woods, W. et al. Determining interface dielectric losses in superconducting coplanar-waveguide resonators. Phys. Rev. Appl. 12, 014012 (2019).

  6. Arute, F. et al. Quantum supremacy using a programmable superconducting processor. Nature 574, 505–510 (2019).

    Article  CAS  Google Scholar 

  7. Zajac, D. et al. Spectator errors in tunable coupling architectures. Preprint at (2021).

  8. Dean, C. R. et al. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5, 722–726 (2010).

    Article  CAS  Google Scholar 

  9. Geim, A. K. & Grigorieva, I. V. Van der waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  10. Caldwell, J. D. et al. Photonics with hexagonal boron nitride. Nat. Rev. Mater. 4, 552–567 (2019).

    Article  CAS  Google Scholar 

  11. Wang, J. I.-J. et al. Coherent control of a hybrid superconducting circuit made with graphene-based van der Waals heterostructures. Nat. Nanotechnol. 14, 120–125 (2019).

    Article  CAS  Google Scholar 

  12. Schmidt, F.E., Jenkins, M.D., Watanabe, K., Taniguchi, T. & Steele, G.A. A ballistic graphene superconducting microwave circuit. Nat. Commun. 9, 4069 (2018).

  13. Kroll, J.G. et al. Magnetic field compatible circuit quantum electrodynamics with graphene Josephson junctions. Nat. Commun. 9, 4615 (2018).

  14. Laturia, A., Van de Put, M. L. & Vandenberghe, W. G. Dielectric properties of hexagonal boron nitride and transition metal dichalcogenides: from monolayer to bulk. NPJ 2D Mater. Appl. 2, 6 (2018).

    Article  Google Scholar 

  15. Wang, L. et al. One-dimensional electrical contact to a two-dimensional material. Science 342, 614–617 (2013).

    Article  CAS  Google Scholar 

  16. Probst, S., Song, F. B., Bushev, P. A., Ustinov, A. V. & Weides, M. Efficient and robust analysis of complex scattering data under noise in microwave resonators. Rev. Sci. Instrum. 86, 024706 (2015).

    Article  CAS  Google Scholar 

  17. Xi, X. et al. Ising pairing in superconducting NbSe2 atomic layers. Nat. Phys. 12, 139–143 (2016).

    Article  CAS  Google Scholar 

  18. Ugeda, M. M. et al. Characterization of collective ground states in single-layer NbSe2. Nat. Phys. 12, 92–97 (2016).

    Article  CAS  Google Scholar 

  19. De Visser, P. et al. Evidence of a nonequilibrium distribution of quasiparticles in the microwave response of a superconducting aluminum resonator. Phys. Rev. Lett. 112, 047004 (2014).

    Article  Google Scholar 

  20. Barends, R. et al. Coherent Josephson qubit suitable for scalable quantum integrated circuits. Phys. Rev. Lett. 111, 080502 (2013).

    Article  CAS  Google Scholar 

  21. Yan, F. et al. The flux qubit revisited to enhance coherence and reproducibility. Nature Commun. 7, 12964 (2016).

    Article  CAS  Google Scholar 

  22. Schoelkopf, R., Clerk, A., Girvin, S., Lehnert, K. & Devoret, M. in Quantum Noise in Mesoscopic Physics (ed. Nazarov, Y. V.) 175–203 (Springer, 2003).

  23. Haigh, S. et al. Cross-sectional imaging of individual layers and buried interfaces of graphene-based heterostructures and superlattices. Nat. Mater. 11, 764–767 (2012).

    Article  CAS  Google Scholar 

  24. Wisbey, D. S. et al. Dielectric loss of boron-based dielectrics on niobium resonators. J. Low Temp. Phys. 195, 474–486 (2019).

    Article  CAS  Google Scholar 

  25. Weber, S. J., Murch, K. W., Slichter, D. H., Vijay, R. & Siddiqi, I. Single crystal silicon capacitors with low microwave loss in the single photon regime. Appl. Phys. Lett. 98, 172510 (2011).

    Article  Google Scholar 

  26. Cho, K.-H. et al. Epitaxial Al2O3 capacitors for low microwave loss superconducting quantum circuits. APL Mater. 1, 042115 (2013).

    Article  Google Scholar 

  27. Kim, S. et al. Enhanced coherence of all-nitride superconducting qubits epitaxially grown on silicon substrate. Commun. Mater. 2, 98 (2021).

    Article  CAS  Google Scholar 

  28. Zhao, R. et al. Merged-element transmon. Phys. Rev. Appl. 14, 064006 (2020).

    Article  CAS  Google Scholar 

  29. Mamin, H. J. et al. Merged-element transmons: design and qubit performance. Phys. Rev. Appl. 16, 024023 (2021).

    Article  CAS  Google Scholar 

  30. Lee, J. S. et al. Wafer-scale single-crystal hexagonal boron nitride film via self-collimated grain formation. Science 362, 817–821 (2018).

    Article  CAS  Google Scholar 

  31. Chen, T.-A. et al. Wafer-scale single-crystal hexagonal boron nitride monolayers on Cu(111). Nature 579, 219–223 (2020).

    Article  CAS  Google Scholar 

  32. Antony, A. et al. Miniaturizing transmon qubits using van der Waals materials. Nano Lett. 21, 10122–10126 (2021).

    Article  CAS  Google Scholar 

Download references


We acknowledge helpful discussions with G. Calusine, T. Hazard, D. Klein, D. MacNeill, K. O’Brien, A. Di Paolo and A. Vepsäläinen. We thank R. Das at MIT Lincoln Laboratory for technical assistance. This research was funded in part by the US Army Research Office grant number W911NF-18-S-0116, by the National Science Foundation QII-TAQS grant number OMA-1936263, and by the Assistant Secretary of Defense for Research & Engineering via MIT Lincoln Laboratory under Air Force contract number FA8721-05-C-0002. K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan (grant number JPMXP0112101001) and JSPS KAKENHI (grant numbers 19H05790 and JP20H00354). The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies or endorsements of the US Government.

Author information

Authors and Affiliations



J.I-J.W. and M.A.Y. conceived and designed the experiment. M.A.Y. performed the microwave simulation. J.I-J.W., M.A.Y., Q.L., T.D., D.K., A.J.M., B.M.N, K.S., J.L.Y. and M.E.S. contributed to the device fabrication. J.I-J.W., M.A.Y., A.H.K., S.E.M., B.K., Y.S., J.B., S.G. and R.W. participated in the measurements. M.A.Y., J.I-J.W. and A.H.K analysed the data. K.W. and T.T. grew the hBN crystal. J.I-J.W. and W.D.O. led the paper writing, and all other authors contributed to the text. T.P.O., S.G., P.J-H. and W.D.O supervised the project.

Corresponding authors

Correspondence to Joel I-J. Wang, Pablo Jarillo-Herrero or William D. Oliver.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review

Peer review information

Nature Materials thanks Mark Hersam and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary information

Supplementary Figs. 1–4 and Table 1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J.IJ., Yamoah, M.A., Li, Q. et al. Hexagonal boron nitride as a low-loss dielectric for superconducting quantum circuits and qubits. Nat. Mater. 21, 398–403 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing