Abstract
Historically, the interlacing of strands at the molecular level has mainly been limited to coordination polymers and DNA. Despite being proposed on a number of occasions, the direct, bottom-up assembly of molecular building blocks into woven organic polymers remained an aspirational, but elusive, target for several decades. However, recent successes in two-dimensional and three-dimensional molecular-level weaving now offer new opportunities and research directions at the interface of polymer science and molecular nanotopology. This Perspective provides an overview of the features and potential of the periodic nanoscale weaving of polymer chains, distinguishing it from randomly entangled polymer networks and rigid crystalline frameworks. We review the background and experimental progress so far, and conclude by considering the potential of molecular weaving and outline some of the current and future challenges in this emerging field.
This is a preview of subscription content, access via your institution
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout




References
Kadolph, S. J. (ed.) Textiles 10th edn (Prentice-Hall, 2007).
Dietrich-Buchecker, C. O., Sauvage, J.-P. & Kintzinger, J.-P. Une nouvelle famille de molecules: les metallo-catenanes. Tetrahedron Lett. 24, 5095–5098 (1983).
Thompson, M. C. & Busch, D. H. Reactions of coordinated ligands. IX. Utilization of the template hypothesis to synthesize macrocyclic ligands in situ. J. Am. Chem. Soc. 86, 3651–3656 (1964).
Busch, D. H. Structural definition of chemical templates and the prediction of new and unusual materials. J. Inclusion Phenom. Mol. Recognit. Chem. 12, 389–395 (1992).
Hubin, T. J. & Busch, D. H. Template routes to interlocked molecular structures and orderly molecular entanglements. Coord. Chem. Rev. 200–202, 5–52 (2000).
Leigh, D. A., Lemonnier, J.-F. & Woltering, S. L. Comment on “Coordination-driven self-assembly of a molecular knot comprising sixteen crossings”. Angew. Chem. Int. Ed. 57, 12212–12214 (2018).
Adams, C. C. The Knot Book (Freeman, 1994).
Bruns, C. J. & Stoddart, J. F. The Nature of the Mechanical Bond: From Molecules to Machines (Wiley, 2016).
Sauvage, J.-P. From chemical topology to molecular machines (Nobel lecture). Angew. Chem. Int. Ed. 56, 11080–11093 (2017).
Dietrich-Buchecker, C., Colasson, B., Jouvenot, D. & Sauvage, J.-P. Synthesis of multi‐1,10‐phenanthroline ligands with 1,3‐phenylene linkers and their lithium complexes. Chem. Eur. J. 11, 4374–4386 (2005).
Piguet, C., Bernardinelli, G. & Hopfgartner, G. Helicates as versatile supramolecular complexes. Chem. Rev. 97, 2005–2062 (1997).
Fielden, S. D. P., Leigh, D. A. & Woltering, S. L. Molecular knots. Angew. Chem. Int. Ed. 56, 11166–11194 (2017).
Cougnon, F. B. L., Caprice, K., Pupier, M., Bauza, A. & Frontera, A. A strategy to synthesize molecular knots and links using the hydrophobic effect. J. Am. Chem. Soc. 140, 12442–12450 (2018).
Segawa, Y. et al. Topological molecular nanocarbons: all-benzene catenane and trefoil knot. Science 365, 272–276 (2019).
Stoddart, J. F. Dawning of the age of molecular nanotopology. Nano Lett. 20, 5597–5600 (2020).
Guo, Q.-H., Jiao, Y., Feng, Y. & Stoddart, J. F. The rise and promise of molecular nanotopology. CCS Chem. 3, 1542–1572 (2021).
Inomata, Y., Sawada, T. & Fujita, M. Metal–peptide torus knots from flexible short peptides. Chem 6, 294–303 (2020).
Gao, W.-X., Feng, H.-J., Guo, B.-B., Lu, Y. & Jin, G.-X. Coordination-directed construction of molecular links. Chem. Rev. 120, 6288–6325 (2020).
Ayme, J.-F. et al. A synthetic molecular pentafoil knot. Nat. Chem. 4, 15–20 (2012).
Leigh, D. A., Pritchard, R. G. & Stephens, A. J. A Star of David catenane. Nat. Chem. 6, 978–982 (2014).
Zhang, L. et al. Stereoselective synthesis of a composite knot with nine crossings. Nat. Chem. 10, 1083–1088 (2018).
Danon, J. J. et al. Braiding a molecular knot with eight crossings. Science 355, 159–162 (2017).
Leigh, D. A. et al. Tying different knots in a molecular strand. Nature 584, 562–568 (2020).
Wang, X.-W. & Zhang, W.-B. Chemical topology and complexity of protein architectures. Trends Biochem. Sci. 43, 806–817 (2018).
Forgan, R. S., Sauvage, J.-P. & Stoddart, J. F. Chemical topology: complex molecular knots, links, and entanglements. Chem. Rev. 9, 5434–5464 (2011).
Dietrich-Buchecker, C. O. & Sauvage, J.-P. A synthetic molecular trefoil knot. Angew. Chem. Int. Ed. 28, 189–192 (1989).
Guo, J., Mayers, P. C., Breault, G. A. & Hunter, C. A. Synthesis of a molecular trefoil knot by folding and closing on an octahedral coordination template. Nat. Chem. 2, 218–220 (2010).
Barran, P. E. et al. Active metal template synthesis of a molecular trefoil knot. Angew. Chem. Int. Ed. 50, 12280–12284 (2011).
Ponnuswamy, N., Cougnon, F. B. L., Clough, J. M., Pantos, G. D. & Sanders, J. K. M. Discovery of an organic trefoil knot. Science 338, 783–785 (2012).
Prakasam, T. et al. Simultaneous self-assembly of a [2]catenane, a trefoil knot, and a Solomon link from a simple pair of ligands. Angew. Chem. Int. Ed. 52, 9956–9960 (2013).
Zhang, G. et al. Lanthanide template synthesis of trefoil knots of single handedness. J. Am. Chem. Soc. 137, 10437–10442 (2015).
Carpenter, J. P. et al. Controlling the shape and chirality of an eight-crossing molecular knot. Chem 7, 1534–1543 (2021).
Leigh, D. A. et al. A molecular endless (74) knot. Nat. Chem. 13, 117–122 (2021).
Nierengarten, J.-F., Dietrich-Buchecker, C. O. & Sauvage, J.-P. Synthesis of a doubly interlocked [2]catenane. J. Am. Chem. Soc. 116, 375–376 (1994).
Beves, J. E., Danon, J. J., Leigh, D. A., Lemonnier, J.-F. & Vitorica-Yrezabal, I. J. A Solomon link through an interwoven molecular grid. Angew. Chem. Int. Ed. 54, 7555–7559 (2015).
August, D. P., Jaramillo-Garcia, J., Leigh, D. A., Valero, A. & Vitorica-Yrezabal, I. J. A chiral cyclometalated iridium Star of David [2]catenane. J. Am. Chem. Soc. 143, 1154–1161 (2021).
Gil-Ramírez, G., Leigh, D. A. & Stephens, A. J. Catenanes: fifty years of molecular links. Angew. Chem. Int. Ed. 54, 6110–6150 (2015).
August, D. P. et al. Self-assembly of a layered two-dimensional molecularly woven fabric. Nature 588, 429–435 (2020).
Liu, Y. et al. Weaving of organic threads into a crystalline covalent organic framework. Science 351, 365–369 (2016).
Zhao, Y. et al. A synthetic route for crystals of woven structures, uniform nanocrystals, and thin films of imine covalent organic frameworks. J. Am. Chem. Soc. 139, 13166–13172 (2017).
Liu, Y., O’Keeffe, M., Treacy, M. M. J. & Yaghi, O. M. The geometry of periodic knots, polycatenanes and weaving from a chemical perspective: a library for reticular chemistry. Chem. Soc. Rev. 47, 4642–4664 (2018).
De Gennes, P. G. Reptation of a polymer chain in the presence of fixed obstacles. J. Chem. Phys. 55, 572–579 (1971).
des Cloizeaux, J. Double reptation vs simple reptation in polymer melts. Europhys. Lett. 5, 437–442 (1988).
Edwards, S. F. The statistical mechanics of polymerized material. Proc. Phys. Soc. 92, 9–16 (1967).
Doi, M. & Takimoto, J. Molecular modelling of entanglement. Phil. Trans. R. Soc. Lond. A 361, 641–652 (2003).
Hua, C. C. & Schieber, J. D. Segment connectivity, chain-length breathing, segmental stretch, and constraint release in reptation models. I. Theory and single-step strain predictions. J. Chem. 109, 10018–10027 (1998).
Edwards, S. F. & Vilgis, T. The effect of entanglements in rubber elasticity. Polymer 27, 483–492 (1986).
Likhtman, A. E. Single-chain slip-link model of entangled polymers: simultaneous description of neutron spin–echo, rheology, and diffusion. Macromolecules 38, 6128–6139 (2005).
Chappa, V. C., Morse, D. C., Zippelius, A. & Müller, M. Translationally invariant slip-spring model for entangled polymer dynamics. Phys. Lett. 109, 148302 (2012).
Uneyama, T. & Masubuchi, Y. Multi-chain slip-spring model for entangled polymer dynamics. J. Chem. Phys. 137, 154902 (2012).
Everaers, R. Rheology and microscopic topology of entangled polymeric liquids. Science 303, 823–826 (2004).
Edwards, S. F. Statistical mechanics with topological constraints: I. Proc. Phys. Soc. 91, 513–519 (1967).
Saitta, A. M., Soper, P. D., Wasserman, E. & Klein, M. L. Influence of a knot on the strength of a polymer strand. Nature 399, 46–48 (1999).
Farago, O., Kantor, Y. & Kardar, M. Pulling knotted polymers. Europhys. Lett. 60, 53–59 (2002).
Caraglio, M., Micheletti, C. & Orlandini, E. Stretching response of knotted and unknotted polymer chains. Phys. Rev. Lett. 115, 188301 (2015).
Dai, L., Renner, C. B. & Doyle, P. S. Metastable tight knots in semiflexible chains. Macromolecules 47, 6135–6140 (2014).
Klotz, A. R., Narsimhan, V., Soh, B. W. & Doyle, P. S. Dynamics of DNA knots during chain relaxation. Macromolecules 50, 4074–4082 (2017).
Green, M. S. & Tobolsky, A. V. A new approach to the theory of relaxing polymeric media. J. Chem. Phys. 14, 80–92 (1946).
Ball, R. C., Doi, M., Edwards, S. F. & Warner, M. Elasticity of entangled networks. Polymer 22, 1010–1018 (1981).
Shchetnikava, V., Slot, J. & van Ruymbeke, E. Comparative analysis of different tube models for linear rheology of monodisperse linear entangled polymers. Polymers 11, 754 (2019).
Watanabe, H. Viscoelasticity and dynamics of entangled polymers. Prog. Polym. Sci. 24, 1253–1403 (1999).
McLeish, T. C. B. Tube theory of entangled polymer dynamics. Adv. Phys. 51, 1379–1527 (2002).
Pawlak, A. The entanglements of macromolecules and their influence on the properties of polymers. Macromol. Chem. Phys. 10, 1900043 (2019).
Karatrantos, A., Composto, R. J., Winey, K. I., Kröger, M. & Clarke, N. Modeling of entangled polymer diffusion in melts and nanocomposites: a review. Polymers 11, 876–905 (2019).
Uneyama, T. & Masubuchi, Y. Plateau moduli of several single-chain slip-link and slip-spring models. Macromolecules 54, 1338–1353 (2021).
Li, G. et al. Woven polymer networks via the topological transformation of a [2]catenane. J. Am. Chem. Soc. 142, 14343–14349 (2020).
Cockriel, D. L. et al. The design and synthesis of pyrazine amide ligands suitable for the ‘tiles’ approach to molecular weaving with octahedral metal ions. Inorg. Chem. Commun. 11, 1–4 (2008).
Wadhwa, N. R., Hughes, N. C., Hachem, J. A. & Mezei, G. Metal-templated synthesis of intertwined, functionalized strands as precursors to molecularly woven materials. RSC Adv. 6, 11430–11440 (2016).
Ciengshin, T., Sha, R. & Seeman, N. C. Automatic molecular weaving prototyped by using single-stranded DNA. Angew. Chem. Int. Ed. 50, 4419–4422 (2011).
Batten, S. R. & Robson, R. Interpenetrating nets: ordered, periodic entanglement. Angew. Chem. Int. Ed. 37, 1460–1494 (1998).
Carlucci, L., Ciani, G. & Proserpio, D. M. Polycatenation, polythreading and polyknotting in coordination network chemistry. Coord. Chem. Rev. 246, 247–289 (2003).
Van Calcar, P.M., Olmstead, M. M. & Balch, A. L. Construction of a knitted crystalline polymer through the use of gold(I)–gold(I) interactions. Chem. Commun. 1995, 1773–1774 (1995).
Axtell, E. A., Liao, J.-H. & Kanatzidis, M. G. Flux synthesis of LiAuS and NaAuS: ‘Chicken-wire-like’ layer formation by interweaving of (AuS)nn− threads. Comparison with α-HgS and AAuS (A = K, Rb). Inorg. Chem. 37, 5583–5587 (1998).
Carlucci, L., Ciani, G., Gramaccioli, A., Proserpio, D. & Rizzato, S. Crystal engineering of coordination polymers and architectures using the [Cu(2,2′-bipy)]2+ molecular corner as building block (bipy = 2,2′- bipyridyl). CrystEngComm 2, 154–163 (2000).
Li, Y.-H. et al. The first ‘two-over/two-under’ (2O/2U) 2D weave structure assembled from Hg-containing 1D coordination polymer chains. Chem. Commum. 2003, 1630–1631 (2003).
Han, L. & Zhou, Y. 2D entanglement of 1D flexible zigzag coordination polymers leading to an interwoven network. Inorg. Chem. Commun. 11, 385–387 (2008).
Wu, H., Yang, J., Su, Z.-M., Batten, S. R. & Ma, J.-F. An exceptional 54-fold interpenetrated coordination polymer with 103-srs network topology. J. Am. Chem. Soc. 133, 11406–11409 (2011).
Champsaur, A. M. et al. Weaving nanoscale cloth through electrostatic templating. J. Am. Chem. Soc. 139, 11718–11721 (2017).
Herdlitschka, A., Lewandowski, B. & Wennemers, H. Organic molecular weaves. Chimia 73, 450–454 (2019).
Liu, Y. & O’Keeffe, M. Regular figures, minimal transitivity, and reticular chemistry. Isr. J. Chem. 58, 962–970 (2018).
Xu, H.-S. et al. Divergent chemistry paths for 3D and 1D metallo-covalent organic frameworks. Angew. Chem. Int. Ed. 59, 11527–11532 (2020).
Xu, H.-S. et al. Single crystal of a one-dimensional metallo-covalent organic framework. Nat. Commun. 11, 1434–1439 (2020).
Lewandowska, U. et al. A triaxial supramolecular weave. Nat. Chem. 9, 1068–1072 (2017).
Ashton, P. R. et al. Supramolecular weaving. Angew. Chem. Int. Ed. 36, 735–739 (1997).
Huang, Q. et al. Dynamic molecular weaving in a two-dimensional hydrogen-bonded organic framework. Chem 7, 1321–1332 (2021).
Wang, Z. et al. Molecular weaving via surface-templated epitaxy of crystalline coordination networks. Nat. Commun. 8, 14442–14449 (2017).
Wu, Q. et al. Poly[n]catenanes: synthesis of molecular interlocked chains. Science 358, 1434–1439 (2017).
Hawker, C. J. & Wooley, K. L. The convergence of synthetic organic and polymer chemistries. Science 309, 1200–1205 (2005).
Wang, Q. & Schniepp, H. C. Strength of recluse spider’s silk originates from nanofibrils. ACS Macro Lett. 7, 1364–1370 (2018).
Nguyen, H. L. et al. A porous covalent organic framework with voided square grid topology for atmospheric water harvesting. J. Am. Chem. Soc. 142, 2218–2221 (2020).
Kantor, Y. & Hassold, G. N. Entanglements in random systems. Phys. Rev. A 40, 5334–5341 (1981).
Acknowledgements
We thank the Engineering and Physical Sciences Research Council (EPSRC; EP/P027067/1), the European Research Council (ERC Advanced Grant 786630) and East China Normal University for funding, and T. Bouwens for bringing D.A.L.’s attention to the Latin root of ‘complexity’. D.A.L. is a Royal Society Research Professor.
Author information
Authors and Affiliations
Corresponding authors
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review
Peer review information
Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Zhang, ZH., Andreassen, B.J., August, D.P. et al. Molecular weaving. Nat. Mater. 21, 275–283 (2022). https://doi.org/10.1038/s41563-021-01179-w
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01179-w