Abstract
Disordered magnetic states known as spin liquids are of paramount importance in both fundamental and applied science. A classical state of this kind was predicted for the Ising antiferromagnetic triangular model, while additional non-commuting exchange terms were proposed to induce its quantum version—a quantum spin liquid. However, these predictions have not yet been confirmed experimentally. Here, we report evidence for such a state in the triangular-lattice antiferromagnet NdTa7O19. We determine its magnetic ground state, which is characterized by effective spin-1/2 degrees of freedom with Ising-like nearest-neighbour correlations and gives rise to spin excitations persisting down to the lowest accessible temperature of 40 mK. Our study demonstrates the key role of strong spin–orbit coupling in stabilizing spin liquids that result from magnetic anisotropy and highlights the large family of rare-earth (RE) heptatantalates RETa7O19 as a framework for realization of these states, which represent a promising platform for quantum applications.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Competition between magnetic interactions and structural instabilities leading to itinerant frustration in the triangular lattice antiferromagnet LiCrSe2
Communications Materials Open Access 07 October 2023
-
Nuclear and magnetic spin structure of the antiferromagnetic triangular lattice compound LiCrTe2 investigated by $$\mu ^+$$SR, neutron and X-ray diffraction
Scientific Reports Open Access 15 December 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
References
Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).
Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).
Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).
Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).
Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).
Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).
Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).
Capriotti, L., Trumper, A. E. & Sorella, S. Long-range Néel order in the triangular Heisenberg model. Phys. Rev. Lett. 82, 3899 (1999).
Iqbal, Y., Hu, W.-J., Thomale, R., Poilblanc, D. & Becca, F. Spin liquid nature in the Heisenberg J1 − J2 triangular antiferromagnet. Phys. Rev. B 93, 144411 (2016).
Yunoki, S. & Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 74, 014408 (2006).
Yamamoto, D., Marmorini, G. & Danshita, I. Quantum phase diagram of the triangular-lattice xxz model in a magnetic field. Phys. Rev. Lett. 112, 127203 (2014).
Maksimov, P. A., Zhu, Z., White, S. R. & Chernyshev, A. L. Anisotropic-exchange magnets on a triangular lattice: spin waves, accidental degeneracies, and dual spin liquids. Phys. Rev. X 9, 021017 (2019).
Wannier, G. H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357 (1950).
Moessner, R. & Sondhi, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001).
Nagai, O., Horiguchi, T. & Miyashite, S. in Frustrated Spin Systems (ed. Diep, H. T.) (World Scientific, 2004).
Fazekas, P. & Anderson, P. W. On the ground state properties of the anisotropic triangular antiferromagnet. Philos. Mag. 30, 423 (1974).
Li, Y.-D., Wang, X. & Chen, G. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets. Phys. Rev. B 94, 035107 (2016).
Iaconis, J., Liu, C., Halász, G. B. & Balents, L. Spin liquid versus spin orbit coupling on the triangular lattice. SciPost Phys. 4, 003 (2018).
Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).
Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).
Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016).
Li, Y. et al. Muon spin relaxation evidence for the U(1) quantum spin-liquid ground state in the triangular antiferromagnet YbMgGaO4. Phys. Rev. Lett. 117, 097201 (2016).
Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Disorder-induced mimicry of a spin liquid in YbMgGaO4. Phys. Rev. Lett. 119, 157201 (2017).
Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).
Watanabe, K., Kawamura, H., Nakano, H. & Sakai, T. Quantum spin-liquid behavior in the spin-1/2 random Heisenberg antiferromagnet on the triangular lattice. J. Phys. Soc. Jpn 83, 034714 (2014).
Kawamura, H. & Uematsu, K. Nature of the randomness-induced quantum spin liquids in two dimensions. J. Phys. Condens. Matter 31, 504003 (2019).
Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).
Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).
Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).
Liu, W. et al. Rare-earth chalcogenides: a large family of triangular lattice spin liquid candidates. Chin. Phys. Lett. 35, 117501 (2018).
Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058 (2019).
Ashtar, M. et al. REZnAl11O19 (RE= Pr, Nd, Sm–Tb): a new family of ideal 2D triangular lattice frustrated magnets. J. Mater. Chem. C 7, 10073 (2019).
Schaffrath, U. & Gruehn, R. Zum chemischen transport von verbindungen des typs LnTa7O19 (Ln= La–Nd) mit einer bemerkung zur strukturverfeinerung von NdTa7O19. Z. Anorg. Allg. Chem. 588, 43–54 (1990).
Leonyuk, N. I. et al. A new generation of nonlinear optical and laser crystals of rare earth borate and tantalate families. J. Optoelectron. Adv. Mater. 9, 1206–1214 (2007).
Simonet, V. et al. Hidden magnetic frustration by quantum relaxation in anisotropic Nd langasite. Phys. Rev. Lett. 100, 237204 (2008).
Xu, J. et al. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7. Phys. Rev. B 92, 224430 (2015).
Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 1970).
Zorko, A. et al. Symmetry reduction in the quantum kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 118, 017202 (2017).
Yaouanc, A. & De Réotier, P. D. Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford Univ. Press, 2011).
Zorko, A. et al. Easy-axis kagome antiferromagnet: local-probe study of Nd3Ga5SiO14. Phys. Rev. Lett. 100, 147201 (2008).
Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys. Rev. Lett. 82, 1012 (1999).
Clark, L. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 15, 262–268 (2019).
Xu, J., Balz, C., Baines, C., Luetkens, H. & Lake, B. Spin dynamics of the ordered dipolar-octupolar pseudospin-1/2 pyrochlore Nd2Zr2O7 probed by muon spin relaxation. Phys. Rev. B 94, 064425 (2016).
Cevallos, F. A., Stolze, K. & Cava, R. J. Structural disorder and elementary magnetic properties of triangular lattice ErMgGaO4 single crystals. Solid State Commun. 276, 5–8 (2018).
Li, Y. et al. Partial up-up-down order with the continuously distributed order parameter in the triangular antiferromagnet TmMgGaO4. Phys. Rev. X 10, 011007 (2020).
Collins, M. F. & Petrenko, O. A. Triangular antiferromagnets. Can. J. Phys. 75, 605 (1997).
Du, A., Li, J. & Wei, G. Z. The Heisenberg model on a stacked-triangular lattice: spin Green function approach. Phys. Status Solidi B 240, 230–239 (2003).
Murtazaev, A. K. & Ramazanov, M. K. Critical properties of the three-dimensional frustrated Heisenberg model on a layered-triangular lattice with variable interplane exchange interaction. Phys. Rev. B. 76, 174421 (2007).
Gingras, M. J. P. & McClarty, P. A. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77, 056501 (2014).
Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).
Zuev, M. G., Politova, E. D. & Stefanovich, S. Y. The X-ray diffraction characteristics and non-linear-optical and electrophysical properties of the tantalates MTa7O19 (M= La-Tm, Y). Russ. J. Inorg. Chem. 36, 875–877 (1991).
Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Condens. Matter 192, 55–69 (1993).
Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).
Stewart, J. R., Andersen, K. H., Cywinski, R. & Murani, A. P. Magnetic diffuse scattering in disordered systems studied by neutron polarization analysis. J. Appl. Phys. 87, 5425–5430 (2000).
Paddison, J. A. M., Stewart, J. R. & Goodwin, A. L. Spinvert: a program for refinement of paramagnetic diffuse scattering data. J. Phys. Condens. Matter 25, 454220 (2013).
Stevens, K. W. H. Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc. Phys. Soc. 65, 209 (1952).
Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).
Newman, D. J. & Ng, B. Crystal Field Handbook (Cambridge Univ. Press, 2007).
Foronda, F. R. et al. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory. Phys. Rev. Lett. 114, 017602 (2015).
Pregelj, M., Zorko, A., Le, M. D., Arh, T. & Khuntia, P. Crystal-field and magnetic excitations in NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB1920405 (2019).
Pregelj, M., Manuel, P., Khuntia, P., Zorko, A. & Arh, T. Quantum spin liquid in the triangular antiferromagnet NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB2000222 (2021).
Zorko, A., Arh, T., Mangin-Thro, L. & Pregelj, M. Correlations in the spin-liquid ground state of the Ising triangular antiferromagnet NdTa7O19. Institut Laue-Langevin (ILL) https://doi.org/10.5291/ILL-DATA.5-32-930 (2021).
Zorko, A., Biswas, P. & Khuntia, P. Spin liquid state in a novel rare-earth based triangular lattice antiferromagnet NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB1910518 (2019).
Acknowledgements
We thank B. D. Gaulin for fruitful discussions. We acknowledge the financial support of the Slovenian Research Agency under programme no. P1-0125 and projects no. J1-2461, no. BI-US/18-20-064, no. N1-0148 and no. J2-2513. Also, we acknowledge the financial support from the Science and Engineering Research Board, and the Department of Science and Technology, India, through research grants. The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1644779 and the State of Florida. INS and neutron diffraction experiments at the ISIS Neutron and Muon Source were supported by beam-time allocations RB1920405 and RB2000222, respectively, while the μSR experiment was supported by the beam-time allocation RB1910518, all approved by the Science and Technology Facility Council. Diffuse magnetic scattering measurements were supported by beam-time allocation 5-32-930 approved by ILL.
Author information
Authors and Affiliations
Contributions
T.A. and B.S. contributed equally to this work and are both assigned first authorship of the paper. P.K. conceived the investigation of NdTa7O19, while A.Z. is the corresponding author who designed this project and supervised the experiments presented in this work. B.S. and P.K. synthesized and structurally characterized the sample. Z.J. and B.S. performed the bulk magnetic measurements. T.A., M.P. and M.D.L. conducted the INS measurements, P.M. conducted the neutron diffraction experiment, and L.M.-T. conducted the diffuse magnetic scattering experiment. M.P. analysed the neutron scattering results and performed the CEF modelling. A.Z. and A.O. performed the ESR measurements, and A.Z. analysed the results. T.A., P.K.B. and A.Z. conducted the μSR investigation; T.A. analysed the corresponding data. All authors discussed the results and the paper. A.Z. wrote the paper, with input provided by M.P. and P.K.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Peer review information
Nature Materials thanks W. Andrew MacFarlane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Additional information
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–7, Tables I–III and Discussion.
Rights and permissions
About this article
Cite this article
Arh, T., Sana, B., Pregelj, M. et al. The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate. Nat. Mater. 21, 416–422 (2022). https://doi.org/10.1038/s41563-021-01169-y
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01169-y
This article is cited by
-
Competition between magnetic interactions and structural instabilities leading to itinerant frustration in the triangular lattice antiferromagnet LiCrSe2
Communications Materials (2023)
-
Using single vacancies to build quantum antidots with atomic precision
Nature Nanotechnology (2023)
-
Atomically precise vacancy-assembled quantum antidots
Nature Nanotechnology (2023)
-
Nuclear and magnetic spin structure of the antiferromagnetic triangular lattice compound LiCrTe2 investigated by $$\mu ^+$$SR, neutron and X-ray diffraction
Scientific Reports (2022)