Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate

Abstract

Disordered magnetic states known as spin liquids are of paramount importance in both fundamental and applied science. A classical state of this kind was predicted for the Ising antiferromagnetic triangular model, while additional non-commuting exchange terms were proposed to induce its quantum version—a quantum spin liquid. However, these predictions have not yet been confirmed experimentally. Here, we report evidence for such a state in the triangular-lattice antiferromagnet NdTa7O19. We determine its magnetic ground state, which is characterized by effective spin-1/2 degrees of freedom with Ising-like nearest-neighbour correlations and gives rise to spin excitations persisting down to the lowest accessible temperature of 40 mK. Our study demonstrates the key role of strong spin–orbit coupling in stabilizing spin liquids that result from magnetic anisotropy and highlights the large family of rare-earth (RE) heptatantalates RETa7O19 as a framework for realization of these states, which represent a promising platform for quantum applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Crystal structure and magnetic ground state of NdTa7O19.
Fig. 2: Bulk magnetic properties of NdTa7O19.
Fig. 3: Excitations and correlations in NdTa7O19.
Fig. 4: Magnetic anisotropy in NdTa7O19.
Fig. 5: Quantum SL ground state of NdTa7O19 evidenced by muon spectroscopy.

Similar content being viewed by others

Data availability

All data that support the findings of this study are available from the corresponding author upon reasonable request. The inelastic neutron scattering data can be found in ref. 60, the neutron diffraction data in ref. 61, the diffuse neutron scattering data in ref. 62 and the μSR data in ref. 63.

References

  1. Basov, D., Averitt, R. & Hsieh, D. Towards properties on demand in quantum materials. Nat. Mater. 16, 1077–1088 (2017).

    Article  CAS  Google Scholar 

  2. Keimer, B. & Moore, J. E. The physics of quantum materials. Nat. Phys. 13, 1045–1055 (2017).

    Article  CAS  Google Scholar 

  3. Tokura, Y., Kawasaki, M. & Nagaosa, N. Emergent functions of quantum materials. Nat. Phys. 13, 1056–1068 (2017).

    Article  CAS  Google Scholar 

  4. Balents, L. Spin liquids in frustrated magnets. Nature 464, 199 (2010).

    Article  CAS  Google Scholar 

  5. Savary, L. & Balents, L. Quantum spin liquids: a review. Rep. Prog. Phys. 80, 016502 (2017).

    Article  Google Scholar 

  6. Broholm, C. et al. Quantum spin liquids. Science 367, eaay0668 (2020).

    Article  CAS  Google Scholar 

  7. Anderson, P. W. Resonating valence bonds: a new kind of insulator? Mater. Res. Bull. 8, 153–160 (1973).

    Article  CAS  Google Scholar 

  8. Capriotti, L., Trumper, A. E. & Sorella, S. Long-range Néel order in the triangular Heisenberg model. Phys. Rev. Lett. 82, 3899 (1999).

    Article  CAS  Google Scholar 

  9. Iqbal, Y., Hu, W.-J., Thomale, R., Poilblanc, D. & Becca, F. Spin liquid nature in the Heisenberg J1 − J2 triangular antiferromagnet. Phys. Rev. B 93, 144411 (2016).

    Article  Google Scholar 

  10. Yunoki, S. & Sorella, S. Two spin liquid phases in the spatially anisotropic triangular Heisenberg model. Phys. Rev. B 74, 014408 (2006).

    Article  Google Scholar 

  11. Yamamoto, D., Marmorini, G. & Danshita, I. Quantum phase diagram of the triangular-lattice xxz model in a magnetic field. Phys. Rev. Lett. 112, 127203 (2014).

    Article  Google Scholar 

  12. Maksimov, P. A., Zhu, Z., White, S. R. & Chernyshev, A. L. Anisotropic-exchange magnets on a triangular lattice: spin waves, accidental degeneracies, and dual spin liquids. Phys. Rev. X 9, 021017 (2019).

    CAS  Google Scholar 

  13. Wannier, G. H. Antiferromagnetism. The triangular Ising net. Phys. Rev. 79, 357 (1950).

    Article  Google Scholar 

  14. Moessner, R. & Sondhi, S. L. Ising models of quantum frustration. Phys. Rev. B 63, 224401 (2001).

    Article  Google Scholar 

  15. Nagai, O., Horiguchi, T. & Miyashite, S. in Frustrated Spin Systems (ed. Diep, H. T.) (World Scientific, 2004).

  16. Fazekas, P. & Anderson, P. W. On the ground state properties of the anisotropic triangular antiferromagnet. Philos. Mag. 30, 423 (1974).

    Article  CAS  Google Scholar 

  17. Li, Y.-D., Wang, X. & Chen, G. Anisotropic spin model of strong spin-orbit-coupled triangular antiferromagnets. Phys. Rev. B 94, 035107 (2016).

    Article  Google Scholar 

  18. Iaconis, J., Liu, C., Halász, G. B. & Balents, L. Spin liquid versus spin orbit coupling on the triangular lattice. SciPost Phys. 4, 003 (2018).

    Article  Google Scholar 

  19. Witczak-Krempa, W., Chen, G., Kim, Y. B. & Balents, L. Correlated quantum phenomena in the strong spin-orbit regime. Annu. Rev. Condens. Matter Phys. 5, 57–82 (2014).

    Article  CAS  Google Scholar 

  20. Li, Y. et al. Rare-earth triangular lattice spin liquid: a single-crystal study of YbMgGaO4. Phys. Rev. Lett. 115, 167203 (2015).

    Article  Google Scholar 

  21. Shen, Y. et al. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate. Nature 540, 559–562 (2016).

    Article  CAS  Google Scholar 

  22. Li, Y. et al. Muon spin relaxation evidence for the U(1) quantum spin-liquid ground state in the triangular antiferromagnet YbMgGaO4. Phys. Rev. Lett. 117, 097201 (2016).

    Article  Google Scholar 

  23. Zhu, Z., Maksimov, P. A., White, S. R. & Chernyshev, A. L. Disorder-induced mimicry of a spin liquid in YbMgGaO4. Phys. Rev. Lett. 119, 157201 (2017).

    Article  Google Scholar 

  24. Kimchi, I., Nahum, A. & Senthil, T. Valence bonds in random quantum magnets: theory and application to YbMgGaO4. Phys. Rev. X 8, 031028 (2018).

    CAS  Google Scholar 

  25. Watanabe, K., Kawamura, H., Nakano, H. & Sakai, T. Quantum spin-liquid behavior in the spin-1/2 random Heisenberg antiferromagnet on the triangular lattice. J. Phys. Soc. Jpn 83, 034714 (2014).

    Article  Google Scholar 

  26. Kawamura, H. & Uematsu, K. Nature of the randomness-induced quantum spin liquids in two dimensions. J. Phys. Condens. Matter 31, 504003 (2019).

    Article  CAS  Google Scholar 

  27. Shimizu, Y., Miyagawa, K., Kanoda, K., Maesato, M. & Saito, G. Spin liquid state in an organic Mott insulator with a triangular lattice. Phys. Rev. Lett. 91, 107001 (2003).

    Article  CAS  Google Scholar 

  28. Itou, T., Oyamada, A., Maegawa, S., Tamura, M. & Kato, R. Quantum spin liquid in the spin-1/2 triangular antiferromagnet EtMe3Sb[Pd(dmit)2]2. Phys. Rev. B 77, 104413 (2008).

    Article  Google Scholar 

  29. Klanjšek, M. et al. A high-temperature quantum spin liquid with polaron spins. Nat. Phys. 13, 1130–1134 (2017).

    Article  Google Scholar 

  30. Liu, W. et al. Rare-earth chalcogenides: a large family of triangular lattice spin liquid candidates. Chin. Phys. Lett. 35, 117501 (2018).

    Article  CAS  Google Scholar 

  31. Bordelon, M. M. et al. Field-tunable quantum disordered ground state in the triangular-lattice antiferromagnet NaYbO2. Nat. Phys. 15, 1058 (2019).

    Article  CAS  Google Scholar 

  32. Ashtar, M. et al. REZnAl11O19 (RE= Pr, Nd, Sm–Tb): a new family of ideal 2D triangular lattice frustrated magnets. J. Mater. Chem. C 7, 10073 (2019).

    Article  CAS  Google Scholar 

  33. Schaffrath, U. & Gruehn, R. Zum chemischen transport von verbindungen des typs LnTa7O19 (Ln= La–Nd) mit einer bemerkung zur strukturverfeinerung von NdTa7O19. Z. Anorg. Allg. Chem. 588, 43–54 (1990).

    Article  CAS  Google Scholar 

  34. Leonyuk, N. I. et al. A new generation of nonlinear optical and laser crystals of rare earth borate and tantalate families. J. Optoelectron. Adv. Mater. 9, 1206–1214 (2007).

    CAS  Google Scholar 

  35. Simonet, V. et al. Hidden magnetic frustration by quantum relaxation in anisotropic Nd langasite. Phys. Rev. Lett. 100, 237204 (2008).

    Article  CAS  Google Scholar 

  36. Xu, J. et al. Magnetic structure and crystal-field states of the pyrochlore antiferromagnet Nd2Zr2O7. Phys. Rev. B 92, 224430 (2015).

    Article  Google Scholar 

  37. Abragam, A. & Bleaney, B. Electron Paramagnetic Resonance of Transition Ions (Clarendon Press, 1970).

    Google Scholar 

  38. Zorko, A. et al. Symmetry reduction in the quantum kagome antiferromagnet herbertsmithite. Phys. Rev. Lett. 118, 017202 (2017).

    Article  CAS  Google Scholar 

  39. Yaouanc, A. & De Réotier, P. D. Muon Spin Rotation, Relaxation, and Resonance: Applications to Condensed Matter (Oxford Univ. Press, 2011).

    Google Scholar 

  40. Zorko, A. et al. Easy-axis kagome antiferromagnet: local-probe study of Nd3Ga5SiO14. Phys. Rev. Lett. 100, 147201 (2008).

    Article  CAS  Google Scholar 

  41. Gardner, J. S. et al. Cooperative paramagnetism in the geometrically frustrated pyrochlore antiferromagnet Tb2Ti2O7. Phys. Rev. Lett. 82, 1012 (1999).

  42. Clark, L. et al. Two-dimensional spin liquid behaviour in the triangular-honeycomb antiferromagnet TbInO3. Nat. Phys. 15, 262–268 (2019).

    Article  CAS  Google Scholar 

  43. Xu, J., Balz, C., Baines, C., Luetkens, H. & Lake, B. Spin dynamics of the ordered dipolar-octupolar pseudospin-1/2 pyrochlore Nd2Zr2O7 probed by muon spin relaxation. Phys. Rev. B 94, 064425 (2016).

    Article  Google Scholar 

  44. Cevallos, F. A., Stolze, K. & Cava, R. J. Structural disorder and elementary magnetic properties of triangular lattice ErMgGaO4 single crystals. Solid State Commun. 276, 5–8 (2018).

    Article  CAS  Google Scholar 

  45. Li, Y. et al. Partial up-up-down order with the continuously distributed order parameter in the triangular antiferromagnet TmMgGaO4. Phys. Rev. X 10, 011007 (2020).

    CAS  Google Scholar 

  46. Collins, M. F. & Petrenko, O. A. Triangular antiferromagnets. Can. J. Phys. 75, 605 (1997).

    Article  CAS  Google Scholar 

  47. Du, A., Li, J. & Wei, G. Z. The Heisenberg model on a stacked-triangular lattice: spin Green function approach. Phys. Status Solidi B 240, 230–239 (2003).

    Article  CAS  Google Scholar 

  48. Murtazaev, A. K. & Ramazanov, M. K. Critical properties of the three-dimensional frustrated Heisenberg model on a layered-triangular lattice with variable interplane exchange interaction. Phys. Rev. B. 76, 174421 (2007).

    Article  Google Scholar 

  49. Gingras, M. J. P. & McClarty, P. A. Quantum spin ice: a search for gapless quantum spin liquids in pyrochlore magnets. Rep. Prog. Phys. 77, 056501 (2014).

    Article  CAS  Google Scholar 

  50. Kitaev, A. Y. Anyons in an exactly solved model and beyond. Ann. Phys. 321, 2–111 (2006).

    Article  CAS  Google Scholar 

  51. Zuev, M. G., Politova, E. D. & Stefanovich, S. Y. The X-ray diffraction characteristics and non-linear-optical and electrophysical properties of the tantalates MTa7O19 (M= La-Tm, Y). Russ. J. Inorg. Chem. 36, 875–877 (1991).

    Google Scholar 

  52. Rodríguez-Carvajal, J. Recent advances in magnetic structure determination by neutron powder diffraction. Physica B Condens. Matter 192, 55–69 (1993).

    Article  Google Scholar 

  53. Bain, G. A. & Berry, J. F. Diamagnetic corrections and Pascal’s constants. J. Chem. Educ. 85, 532–536 (2008).

    Article  CAS  Google Scholar 

  54. Stewart, J. R., Andersen, K. H., Cywinski, R. & Murani, A. P. Magnetic diffuse scattering in disordered systems studied by neutron polarization analysis. J. Appl. Phys. 87, 5425–5430 (2000).

    Article  CAS  Google Scholar 

  55. Paddison, J. A. M., Stewart, J. R. & Goodwin, A. L. Spinvert: a program for refinement of paramagnetic diffuse scattering data. J. Phys. Condens. Matter 25, 454220 (2013).

    Article  Google Scholar 

  56. Stevens, K. W. H. Matrix elements and operator equivalents connected with the magnetic properties of rare earth ions. Proc. Phys. Soc. 65, 209 (1952).

    Article  Google Scholar 

  57. Arnold, O. et al. Mantid—data analysis and visualization package for neutron scattering and μ SR experiments. Nucl. Instrum. Methods Phys. Res. A 764, 156–166 (2014).

    Article  CAS  Google Scholar 

  58. Newman, D. J. & Ng, B. Crystal Field Handbook (Cambridge Univ. Press, 2007).

  59. Foronda, F. R. et al. Anisotropic local modification of crystal field levels in Pr-based pyrochlores: a muon-induced effect modeled using density functional theory. Phys. Rev. Lett. 114, 017602 (2015).

    Article  CAS  Google Scholar 

  60. Pregelj, M., Zorko, A., Le, M. D., Arh, T. & Khuntia, P. Crystal-field and magnetic excitations in NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB1920405 (2019).

  61. Pregelj, M., Manuel, P., Khuntia, P., Zorko, A. & Arh, T. Quantum spin liquid in the triangular antiferromagnet NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB2000222 (2021).

  62. Zorko, A., Arh, T., Mangin-Thro, L. & Pregelj, M. Correlations in the spin-liquid ground state of the Ising triangular antiferromagnet NdTa7O19. Institut Laue-Langevin (ILL) https://doi.org/10.5291/ILL-DATA.5-32-930 (2021).

  63. Zorko, A., Biswas, P. & Khuntia, P. Spin liquid state in a novel rare-earth based triangular lattice antiferromagnet NdTa7O19. STFC ISIS Neutron and Muon Source https://doi.org/10.5286/ISIS.E.RB1910518 (2019).

Download references

Acknowledgements

We thank B. D. Gaulin for fruitful discussions. We acknowledge the financial support of the Slovenian Research Agency under programme no. P1-0125 and projects no. J1-2461, no. BI-US/18-20-064, no. N1-0148 and no. J2-2513. Also, we acknowledge the financial support from the Science and Engineering Research Board, and the Department of Science and Technology, India, through research grants. The National High Magnetic Field Laboratory is supported by the National Science Foundation through NSF/DMR-1644779 and the State of Florida. INS and neutron diffraction experiments at the ISIS Neutron and Muon Source were supported by beam-time allocations RB1920405 and RB2000222, respectively, while the μSR experiment was supported by the beam-time allocation RB1910518, all approved by the Science and Technology Facility Council. Diffuse magnetic scattering measurements were supported by beam-time allocation 5-32-930 approved by ILL.

Author information

Authors and Affiliations

Authors

Contributions

T.A. and B.S. contributed equally to this work and are both assigned first authorship of the paper. P.K. conceived the investigation of NdTa7O19, while A.Z. is the corresponding author who designed this project and supervised the experiments presented in this work. B.S. and P.K. synthesized and structurally characterized the sample. Z.J. and B.S. performed the bulk magnetic measurements. T.A., M.P. and M.D.L. conducted the INS measurements, P.M. conducted the neutron diffraction experiment, and L.M.-T. conducted the diffuse magnetic scattering experiment. M.P. analysed the neutron scattering results and performed the CEF modelling. A.Z. and A.O. performed the ESR measurements, and A.Z. analysed the results. T.A., P.K.B. and A.Z. conducted the μSR investigation; T.A. analysed the corresponding data. All authors discussed the results and the paper. A.Z. wrote the paper, with input provided by M.P. and P.K.

Corresponding author

Correspondence to A. Zorko.

Ethics declarations

Competing interests

The authors declare no competing interests.

Peer review information

Nature Materials thanks W. Andrew MacFarlane and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–7, Tables I–III and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arh, T., Sana, B., Pregelj, M. et al. The Ising triangular-lattice antiferromagnet neodymium heptatantalate as a quantum spin liquid candidate. Nat. Mater. 21, 416–422 (2022). https://doi.org/10.1038/s41563-021-01169-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01169-y

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing