Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Flexible automation accelerates materials discovery

Automated experiments can accelerate research and development. ‘Flexible automation’ enables the cost- and time-effective design, construction and reconfiguration of automated experiments. Flexible automation is empowering researchers to deploy new science and technology faster than ever before.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Commoditization of safer, lower-cost, user-friendly robots.
Fig. 2: Flexible automation enables reconfigurable, fully automated materials science experiments.
Fig. 3: Examples of flexible automation in action in materials science.


  1. Schneider, G. Nat. Rev. Drug Discov. 17, 97–113 (2018).

    Article  CAS  Google Scholar 

  2. Bloss, R. Indust. Robot 43, 463–468 (2016).

    Article  Google Scholar 

  3. Masubuchi, S. et al. Nat. Commun. 9, 1413 (2018).

    Article  Google Scholar 

  4. MacLeod, B. P. et al. Sci. Adv. 6, eaaz8867 (2020).

    Article  CAS  Google Scholar 

  5. Li, J. et al. Nat. Commun. 11, 2046 (2020).

    Article  CAS  Google Scholar 

  6. Burger, B. et al. Nature 583, 237–241 (2020).

    Article  CAS  Google Scholar 

  7. Gongora, A. E. et al. Sci. Adv. 6, eaaz1708 (2020).

    Article  Google Scholar 

  8. Wagner, J. et al. J. Mater. Sci. 56, 16422–16446 (2021).

    Article  CAS  Google Scholar 

  9. Du, X. et al. Joule 5, 495–506 (2021).

    Article  CAS  Google Scholar 

  10. Coley, C. W. et al. Science 365, eaax1566 (2019).

    Article  CAS  Google Scholar 

  11. Gongora, A. E. et al. iScience 24, 102262 (2021).

    Article  Google Scholar 

  12. Shiri, P. et al. iScience 24, 102176 (2021).

    Article  CAS  Google Scholar 

  13. Spowart, J. E., Mullens, H. E. & Puchala, B. T. JOM 55, 35–37 (2003).

    Article  CAS  Google Scholar 

  14. Roch, L. M. et al. PLoS ONE 15, e0229862 (2020).

    Article  CAS  Google Scholar 

  15. Forward, R. L. et al. ACS Energy Lett. 4, 2547–2551 (2019).

    Article  CAS  Google Scholar 

  16. Blakesley, J. C. et al. Org. Electron. 15, 1263–1272 (2014).

    Article  CAS  Google Scholar 

  17. Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Nat. Catal. 1, 501–507 (2018).

    Article  CAS  Google Scholar 

  18. Boyce, B. L. & Uchic, M. D. MRS Bull. 44, 273–280 (2019).

    Article  CAS  Google Scholar 

  19. Taherimakhsousi, N. et al. npj Comput. Mater. 6, 111 (2020).

    Article  Google Scholar 

  20. Zhang, Y., Liu, J. J., Zhang, L., De Anda, J. C. & Wang, X. Z. Particuology 24, 61–68 (2016).

    Article  Google Scholar 

  21. Langner, S. et al. Adv. Mater. 32, e1907801 (2020).

    Article  Google Scholar 

  22. Hanak, J. J. J. Mater. Sci. 5, 964–971 (1970).

    Article  CAS  Google Scholar 

  23. Green, M. L. et al. Appl. Phys. Rev. 4, 011105 (2017).

    Article  Google Scholar 

  24. Wang, J. & Evans, J. R. G. J. Comb. Chem. 7, 665–672 (2005).

    Article  CAS  Google Scholar 

  25. Gregoire, J. M., Xiang, C., Liu, X., Marcin, M. & Jin, J. Rev. Sci. Instrum. 84, 024102 (2013).

    Article  Google Scholar 

  26. Stein, H. S. & Gregoire, J. M. Chem. Sci. 10, 9640–9649 (2019).

    Article  CAS  Google Scholar 

  27. Szymanski, N. J. et al. Mater. Horiz. 8, 2169–2198 (2021).

    Article  CAS  Google Scholar 

  28. Pearce, J. M. Science 337, 1303–1304 (2012).

    Article  CAS  Google Scholar 

  29. Jiménez, R. C. et al. F1000Research 6, 876 (2017).

    Article  Google Scholar 

  30. Korus, S. Industrial robot cost declines should trigger tipping points in demand. (ARK Investment Management LLC, 2019).

  31. Dhillon, B. S. (ed.) in Robot Reliability and Safety 49–68 (Springer, 1991).

  32. Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S. & Fuhlbrigge, T. A. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) 1119–1126 (IEEE, 2013).

  33. Pratt, G. A. J. Econ. Perspect. 29, 51–60 (2015).

    Article  Google Scholar 

  34. Wirtz, J. et al. J. Service Manage. 29, 907–931 (2018).

    Article  Google Scholar 

  35. Bock, T. Autom. Constr. 59, 113–121 (2015).

    Article  Google Scholar 

Download references


For sharing their experiences deploying flexible automation, we would like to acknowledge our colleagues E. Booker, N. Taherimakhsousi, M. Elliott, M. Rooney, K. Dettelbach, T. Haley, K. Ocean, T. Morrissey, C. Krzyszkowski, A. Proskurin, S. Steiner, L. Alde, H. Situ, V. Lai and T. Zepel. For encouraging us to adopt machine vision into our workflows and other guidance, we thank J. Platt. We thank Natural Resources Canada (EIP2-MAT-001) for their financial support. C.P.B. is grateful to the Canadian Natural Sciences and Engineering Research Council (RGPIN-2018-06748), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173) and Canada Research Chairs for financial support. J.E.H. is supported by the Canadian Foundation for Innovation (CFI-35883) and the Natural Sciences and Engineering Research Council of Canada (RCPIN-2016-04613, CRDPJ 530118-18). B.P.M., F.G.L.P. and C.P.B. acknowledge support from the SBQMI’s Quantum Electronic Science and Technology Initiative, the Canada First Research Excellence Fund, and the Quantum Materials and Future Technologies Program.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Curtis P. Berlinguette.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Benji Maruyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

MacLeod, B.P., Parlane, F.G.L., Brown, A.K. et al. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing