Automated experiments can accelerate research and development. ‘Flexible automation’ enables the cost- and time-effective design, construction and reconfiguration of automated experiments. Flexible automation is empowering researchers to deploy new science and technology faster than ever before.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films
Integrating Materials and Manufacturing Innovation Open Access 26 October 2023
-
A self-driving laboratory advances the Pareto front for material properties
Nature Communications Open Access 22 February 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout



References
Schneider, G. Nat. Rev. Drug Discov. 17, 97–113 (2018).
Bloss, R. Indust. Robot 43, 463–468 (2016).
Masubuchi, S. et al. Nat. Commun. 9, 1413 (2018).
MacLeod, B. P. et al. Sci. Adv. 6, eaaz8867 (2020).
Li, J. et al. Nat. Commun. 11, 2046 (2020).
Burger, B. et al. Nature 583, 237–241 (2020).
Gongora, A. E. et al. Sci. Adv. 6, eaaz1708 (2020).
Wagner, J. et al. J. Mater. Sci. 56, 16422–16446 (2021).
Du, X. et al. Joule 5, 495–506 (2021).
Coley, C. W. et al. Science 365, eaax1566 (2019).
Gongora, A. E. et al. iScience 24, 102262 (2021).
Shiri, P. et al. iScience 24, 102176 (2021).
Spowart, J. E., Mullens, H. E. & Puchala, B. T. JOM 55, 35–37 (2003).
Roch, L. M. et al. PLoS ONE 15, e0229862 (2020).
Forward, R. L. et al. ACS Energy Lett. 4, 2547–2551 (2019).
Blakesley, J. C. et al. Org. Electron. 15, 1263–1272 (2014).
Sherbo, R. S., Delima, R. S., Chiykowski, V. A., MacLeod, B. P. & Berlinguette, C. P. Nat. Catal. 1, 501–507 (2018).
Boyce, B. L. & Uchic, M. D. MRS Bull. 44, 273–280 (2019).
Taherimakhsousi, N. et al. npj Comput. Mater. 6, 111 (2020).
Zhang, Y., Liu, J. J., Zhang, L., De Anda, J. C. & Wang, X. Z. Particuology 24, 61–68 (2016).
Langner, S. et al. Adv. Mater. 32, e1907801 (2020).
Hanak, J. J. J. Mater. Sci. 5, 964–971 (1970).
Green, M. L. et al. Appl. Phys. Rev. 4, 011105 (2017).
Wang, J. & Evans, J. R. G. J. Comb. Chem. 7, 665–672 (2005).
Gregoire, J. M., Xiang, C., Liu, X., Marcin, M. & Jin, J. Rev. Sci. Instrum. 84, 024102 (2013).
Stein, H. S. & Gregoire, J. M. Chem. Sci. 10, 9640–9649 (2019).
Szymanski, N. J. et al. Mater. Horiz. 8, 2169–2198 (2021).
Pearce, J. M. Science 337, 1303–1304 (2012).
Jiménez, R. C. et al. F1000Research 6, 876 (2017).
Korus, S. Industrial robot cost declines should trigger tipping points in demand. https://go.nature.com/2ZKHvZc (ARK Investment Management LLC, 2019).
Dhillon, B. S. (ed.) in Robot Reliability and Safety 49–68 (Springer, 1991).
Rossano, G. F., Martinez, C., Hedelind, M., Murphy, S. & Fuhlbrigge, T. A. In 2013 IEEE International Conference on Automation Science and Engineering (CASE) 1119–1126 (IEEE, 2013).
Pratt, G. A. J. Econ. Perspect. 29, 51–60 (2015).
Wirtz, J. et al. J. Service Manage. 29, 907–931 (2018).
Bock, T. Autom. Constr. 59, 113–121 (2015).
Acknowledgements
For sharing their experiences deploying flexible automation, we would like to acknowledge our colleagues E. Booker, N. Taherimakhsousi, M. Elliott, M. Rooney, K. Dettelbach, T. Haley, K. Ocean, T. Morrissey, C. Krzyszkowski, A. Proskurin, S. Steiner, L. Alde, H. Situ, V. Lai and T. Zepel. For encouraging us to adopt machine vision into our workflows and other guidance, we thank J. Platt. We thank Natural Resources Canada (EIP2-MAT-001) for their financial support. C.P.B. is grateful to the Canadian Natural Sciences and Engineering Research Council (RGPIN-2018-06748), Canadian Foundation for Innovation (229288), Canadian Institute for Advanced Research (BSE-BERL-162173) and Canada Research Chairs for financial support. J.E.H. is supported by the Canadian Foundation for Innovation (CFI-35883) and the Natural Sciences and Engineering Research Council of Canada (RCPIN-2016-04613, CRDPJ 530118-18). B.P.M., F.G.L.P. and C.P.B. acknowledge support from the SBQMI’s Quantum Electronic Science and Technology Initiative, the Canada First Research Excellence Fund, and the Quantum Materials and Future Technologies Program.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Materials thanks Benji Maruyama and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Rights and permissions
About this article
Cite this article
MacLeod, B.P., Parlane, F.G.L., Brown, A.K. et al. Flexible automation accelerates materials discovery. Nat. Mater. 21, 722–726 (2022). https://doi.org/10.1038/s41563-021-01156-3
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01156-3
This article is cited by
-
The rise of self-driving labs in chemical and materials sciences
Nature Synthesis (2023)
-
Knowledge-integrated machine learning for materials: lessons from gameplaying and robotics
Nature Reviews Materials (2023)
-
Research with robotics
Nature Synthesis (2023)
-
Automate and digitize
Nature Synthesis (2023)
-
A Workflow for Accelerating Multimodal Data Collection for Electrodeposited Films
Integrating Materials and Manufacturing Innovation (2023)