Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing


Synchronization of large spin Hall nano-oscillator (SHNO) arrays is an appealing approach toward ultrafast non-conventional computing. However, interfacing to the array, tuning its individual oscillators and providing built-in memory units remain substantial challenges. Here, we address these challenges using memristive gating of W/CoFeB/MgO/AlOx-based SHNOs. In its high resistance state, the memristor modulates the perpendicular magnetic anisotropy at the CoFeB/MgO interface by the applied electric field. In its low resistance state the memristor adds or subtracts current to the SHNO drive. Both electric field and current control affect the SHNO auto-oscillation mode and frequency, allowing us to reversibly turn on/off mutual synchronization in chains of four SHNOs. We also demonstrate that two individually controlled memristors can be used to tune a four-SHNO chain into differently synchronized states. Memristor gating is therefore an efficient approach to input, tune and store the state of SHNO arrays for non-conventional computing models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Device schematic and multi-level resistive switching of the memristor gate.
Fig. 2: Memristive control of SHNO AOs.
Fig. 3: A chain of two SHNOs with two memristive gates.
Fig. 4: VCMA dominant control of synchronization in a chain of four SHNOs with two memristive gates.
Fig. 5: Memristive dominant control of synchronization in a chain of four SHNOs with two memristive gates.
Fig. 6: Pattern matching using a memristive SHNO chain.

Similar content being viewed by others

Data availability

The data that support the plots within this paper and other findings of this study are available from the corresponding author on request.

Code availability

The MATLAB and MuMax codes used in this study are available from the corresponding author on reasonable request.


  1. Shalf, J. M. & Leland, R. Computing beyond Moore’s law. Computer 48, 14–23 (2015).

    Article  Google Scholar 

  2. Buzsaki, G. Rhythms of the Brain (Oxford University Press, 2006).

  3. Hsu, J. IBM’s new brain (news). IEEE Spectr. 51, 17–19 (2014).

    Article  Google Scholar 

  4. Boybat, I. et al. Neuromorphic computing with multi-memristive synapses. Nat. Commun. 9, 2514 (2018).

    Article  Google Scholar 

  5. Wang, Z. et al. Fully memristive neural networks for pattern classification with unsupervised learning. Nat. Electron. 1, 137 (2018).

    Article  Google Scholar 

  6. Inagaki, T. et al. A coherent ising machine for 2000-node optimization problems. Science 354, 603 (2016).

    Article  CAS  Google Scholar 

  7. Solli, D. R. & Jalali, B. Analog optical computing. Nat. Photonics 9, 704 (2015).

    Article  CAS  Google Scholar 

  8. Torrejon, J. et al. Neuromorphic computing with nanoscale spintronic oscillators. Nature 547, 428 (2017).

    Article  CAS  Google Scholar 

  9. Grollier, J. et al. Neuromorphic spintronics. Nat. Electron. 3, 360–370 (2020).

    Article  Google Scholar 

  10. Manipatruni, S., Nikonov, D. E. & Young, I. A. Beyond CMOS computing with spin and polarization. Nat. Phys. 14, 338 (2018).

    Article  CAS  Google Scholar 

  11. Ladd, T. D. et al. Quantum computers. Nature 464, 45 (2010).

    Article  CAS  Google Scholar 

  12. Fang, Y., Yashin, V. V., Levitan, S. P. & Balazs, A. C. Pattern recognition with ‘materials that compute’. Sci. Adv. 2, e1601114 (2016).

    Article  Google Scholar 

  13. Ignatov, M., Ziegler, M., Hansen, M. & Kohlstedt, H. Memristive stochastic plasticity enables mimicking of neural synchrony: memristive circuit emulates an optical illusion. Sci. Adv. 3, e1700849 (2017).

    Article  Google Scholar 

  14. Kumar, S., Strachan, J. P. & Williams, R. S. Chaotic dynamics in nanoscale NbO2 Mott memristors for analogue computing. Nature 548, 318 (2017).

    Article  CAS  Google Scholar 

  15. McMahon, P. L. et al. A fully programmable 100-spin coherent Ising machine with all-to-all connections. Science 354, 614–617 (2016).

    Article  CAS  Google Scholar 

  16. Borders, W. A. et al. Analogue spin–orbit torque device for artificial-neural-network-based associative memory operation. Appl. Phys. Express 10, 013007 (2016).

    Article  Google Scholar 

  17. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230–234 (2018).

    Article  CAS  Google Scholar 

  18. Awad, A. A. et al. Long-range mutual synchronization of spin Hall nano-oscillators. Nat. Phys. 13, 292–299 (2017).

    Article  CAS  Google Scholar 

  19. Demidov, V. E. et al. Magnetic nano-oscillator driven by pure spin current. Nat. Mater. 11, 1028–1031 (2012).

    Article  CAS  Google Scholar 

  20. Demidov, V. E., Urazhdin, S., Zholud, A., Sadovnikov, A. V. & Demokritov, S. O. Nanoconstriction-based spin-Hall nano-oscillator. Appl. Phys. Lett. 105, 172410 (2014).

    Article  Google Scholar 

  21. Yogendra, K., Fan, D., Jung, B. & Roy, K. Magnetic pattern recognition using injection-locked spin-torque nano-oscillators. IEEE Trans. Electron Devices 63, 1674–1680 (2016).

    Article  CAS  Google Scholar 

  22. Zahedinejad, M. et al. Two-dimensional mutually synchronized spin Hall nano-oscillator arrays for neuromorphic computing. Nat. Nanotechnol. 15, 47–52 (2020).

    Article  CAS  Google Scholar 

  23. Fulara, H. et al. Giant voltage-controlled modulation of spin Hall nano-oscillator damping. Nat. Commun. 11, 4006 (2020).

    Article  CAS  Google Scholar 

  24. Dürrenfeld, P., Awad, A. A., Houshang, A., Dumas, R. K. & Åkerman, J. A 20 nm spin Hall nano-oscillator. Nanoscale 9, 1285–1291 (2017).

    Article  Google Scholar 

  25. Awad, A. A., Houshang, A., Zahedinejad, M., Khymyn, R. & Åkerman, J. Width dependent auto-oscillating properties of constriction based spin Hall nano-oscillators. Appl. Phys. Lett. 116, 232401 (2020).

    Article  CAS  Google Scholar 

  26. Zhang, T., Haider, M., Massoud, Y. & Alexander, J. An oscillatory neural network based local processing unit for pattern recognition applications. Electronics 8, 64 (2019).

    Article  Google Scholar 

  27. Nikonov, D. E. et al. Coupled-oscillator associative memory array operation for pattern recognition. IEEE J. Explor. Solid-State Comput. Devices Circuits 1, 85–93 (2015).

    Article  Google Scholar 

  28. Fang, Y., Yashin, V. V., Jennings, B. B., Chiarulli, D. M. & Levitan, S. P. A simplified phase model for simulation of oscillator-based computing systems. ACM J. Emerg. Technol. Comput. Syst. (JETC) 13, 14 (2017).

    Google Scholar 

  29. Wang, T., Wu, L. & Roychowdhury, J. New computational results and hardware prototypes for oscillator-based Ising machines. In DAC ’19: Proc. 56th Annual Design Automation Conference 2019, 239 (ACM, 2019).

  30. Mohammad, B. et al. State of the art of metal oxide memristor devices. Nanotechnol. Rev. 5, 311–329 (2016).

    Article  CAS  Google Scholar 

  31. Shiota, Y. et al. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11, 39–43 (2012).

    Article  CAS  Google Scholar 

  32. Wang, W.-G., Li, M., Hageman, S. & Chien, C. L. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11, 64–68 (2012).

    Article  CAS  Google Scholar 

  33. Kanai, S. et al. Electric field-induced magnetization reversal in a perpendicular-anisotropy CoFeB/MgO magnetic tunnel junction. Appl. Phys. Lett. 101, 122403 (2012).

    Article  Google Scholar 

  34. Kanai, S. et al. Magnetization switching in a CoFeB/MgO magnetic tunnel junction by combining spin-transfer torque and electric field-effect. Appl. Phys. Lett. 104, 212406 (2014).

    Article  Google Scholar 

  35. Kanai, S., Matsukura, F. & Ohno, H. Electric-field-induced magnetization switching in CoFeB/MgO magnetic tunnel junctions with high junction resistance. Appl. Phys. Lett. 108, 192406 (2016).

    Article  Google Scholar 

  36. Zahedinejad, M. et al. CMOS compatible W/CoFeB/MgO spin Hall nano-oscillators with wide frequency tunability. Appl. Phys. Lett. 112, 132404 (2018).

    Article  Google Scholar 

  37. Fulara, H. et al. Spin-orbit torque-driven propagating spin waves. Sci. Adv. 5, eaax8467 (2019).

    Article  CAS  Google Scholar 

  38. Dvornik, M., Awad, A. A. & Åkerman, J. Origin of magnetization auto-oscillations in constriction-based spin Hall nano-oscillators. Phys. Rev. Appl. 9, 014017 (2018).

    Article  CAS  Google Scholar 

  39. Zhu, L., Ralph, D. C. & Buhrman, R. A. Highly efficient spin-current generation by the spin Hall effect in Au1−xPtx. Phys. Rev. Appl. 10, 031001 (2018).

    Article  CAS  Google Scholar 

  40. Kim, J.-Y. et al. Enhancement of spin Hall conductivity in W-Ta alloy. Appl. Phys. Lett. 117, 142403 (2020).

    Article  CAS  Google Scholar 

  41. Gomez, J., Vourkas, I., Abusleme, A., Sirakoulis, G. C. & Rubio, A. Voltage divider for self-limited analog state programing of memristors. IEEE Trans. Circuits Syst. II: Express Briefs 67, 620–624 (2019).

    Article  Google Scholar 

  42. Merced-Grafals, E. J., Dávila, N., Ge, N., Williams, R. S. & Strachan, J. P. Repeatable, accurate, and high speed multi-level programming of memristor 1T1R arrays for power efficient analog computing applications. Nanotechnology 27, 365202 (2016).

    Article  Google Scholar 

  43. Tabor, P., Tiberkevich, V., Slavin, A. & Urazhdin, S. Hysteretic synchronization of nonlinear spin-torque oscillators. Phys. Rev. B 82, 020407 (2010).

    Article  Google Scholar 

  44. Velichko, A., Belyaev, M., Putrolaynen, V. & Boriskov, P. A new method of the pattern storage and recognition in oscillatory neural networks based on resistive switches. Electronics 7, 266 (2018).

  45. Velichko, A., Belyaev, M. & Boriskov, P. A model of an oscillatory neural network with multilevel neurons for pattern recognition and computing. Electronics 8, 75 (2019).

  46. Parihar, A., Shukla, N., Jerry, M., Datta, S. & Raychowdhury, A. Vertex coloring of graphs via phase dynamics of coupled oscillatory networks. Sci. Rep. 7, 911 (2017).

    Article  Google Scholar 

  47. Chou, J., Bramhavar, S., Ghosh, S. & Herzog, W. Analog coupled oscillator based weighted Ising machine. Sci. Rep. 9, 14786 (2019).

  48. Langton, C. G. Computation at the edge of chaos: phase transitions and emergent computation. Phys. D: Nonlinear Phenom. 42, 12–37 (1990).

    Article  Google Scholar 

  49. Romera, M. et al. Vowel recognition with four coupled spin-torque nano-oscillators. Nature 563, 230 (2018).

    Article  CAS  Google Scholar 

  50. Li, Y., Wang, Z., Midya, R., Xia, Q. & Yang, J. J. Review of memristor devices in neuromorphic computing: materials sciences and device challenges. J. Phys. D: Appl. Phys. 51, 503002 (2018).

    Article  Google Scholar 

Download references


This work was partially supported by the Swedish Research Council (VR grant no. 2016-05980) and the Horizon 2020 research and innovation programmes grant nos. 835068 ‘TOPSPIN’ and 899559 ‘SpinAge’. The work at Tohoku University was supported by the Japan Society for the Promotion of Science Kakenhi grant nos. 17H06093 and 19H05622, JST-CREST grant no. JPMJCR19K3, and RIEC Cooperative Research Projects.

Author information

Authors and Affiliations



S.F., S.K. and H.O. developed the material stacks. M.Z. designed and fabricated the devices, and carried out all measurements and data analysis. H.F. and A.H contributed to the data analysis. R.K. and M.D. carried out all micromagnetic simulations. J.Å. led the project. All authors contributed to the interpretation of the results and cowrote the paper.

Corresponding author

Correspondence to Johan Åkerman.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Sergej Demokritov, Jianhua Yang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zahedinejad, M., Fulara, H., Khymyn, R. et al. Memristive control of mutual spin Hall nano-oscillator synchronization for neuromorphic computing. Nat. Mater. 21, 81–87 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing