Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants

Abstract

Organic long-persistent-luminescent (OLPL) materials demonstrating hour-long photoluminescence have practical advantages in applications owing to their flexible design and easy processability. However, the energy absorbed in these materials is typically stored in an intermediate charge-separated state that is unstable when exposed to oxygen, thus preventing persistent luminescence in air unless oxygen penetration is suppressed through crystallization. Moreover, OLPL materials usually require ultraviolet excitation. Here we overcome such limitations and demonstrate amorphous OLPL systems that can be excited by radiation up to 600 nm and exhibit persistent luminescence in air. By adding cationic photoredox catalysts as electron-accepting dopants in a neutral electron-donor host, stable charge-separated states are generated by hole diffusion in these blends. Furthermore, the addition of hole-trapping molecules extends the photoluminescence lifetime. By using a p-type host less reactive to oxygen and tuning the donor–acceptor energy gap, our amorphous blends exhibit persistent luminescence stimulated by visible light even in air, expanding the applicability of OLPL materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Emission mechanism of a p-type OLPL system.
Fig. 2: Photoluminescence properties of OLPL systems under nitrogen gas.
Fig. 3: Photoluminescence properties of TPP+/TPBi/TCTA film under nitrogen gas.
Fig. 4: Optical properties of OLPL systems in air.

Similar content being viewed by others

Data availability

Source data are provided with this paper. Additional information is available from the authors on request.

References

  1. Xu, J. & Tanabe, S. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. J. Lumin. 205, 581–620 (2019).

    Article  CAS  Google Scholar 

  2. Li, Y., Gecevicius, M. & Qiu, J. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45, 2090–2136 (2016).

    Article  CAS  Google Scholar 

  3. Ueda, J., Miyano, S. & Tanabe, S. Formation of deep electron traps by Yb3+ codoping leads to super-long persistent luminescence in Ce3+-doped yttrium aluminum gallium garnet phosphors. ACS Appl. Mater. Interfaces 10, 20652–20660 (2018).

    Article  CAS  Google Scholar 

  4. Majewska, N. et al. Study of persistent luminescence and thermoluminescence in SrSi2N2O2:Eu2+,M3+ (M = Ce, Dy, and Nd). Phys. Chem. Chem. Phys. 22, 17152–17159 (2020).

    Article  CAS  Google Scholar 

  5. Vitola, V., Millers, D., Bite, I., Smits, K. & Spustaka, A. Recent progress in understanding the persistent luminescence in SrAl2O4:Eu,Dy. Mater. Sci. Technol. 35, 1661–1677 (2019).

    Article  CAS  Google Scholar 

  6. Dorenbos, P. Mechanism of persistent luminescence in Sr2MgSi2O7:Eu2+; Dy3+. Phys. Status Solidi 242, R7–R9 (2005).

    Article  CAS  Google Scholar 

  7. Li, Y. et al. Long persistent and photo-stimulated luminescence in Cr3+-doped Zn–Ga–Sn–O phosphors for deep and reproducible tissue imaging. J. Mater. Chem. C. 2, 2657–2663 (2014).

    Article  CAS  Google Scholar 

  8. Zhuang, Y., Ueda, J., Tanabe, S. & Dorenbos, P. Band-gap variation and a self-redox effect induced by compositional deviation in ZnxGa2O3+x:Cr3+ persistent phosphors. J. Mater. Chem. C. 2, 5502–5509 (2014).

    Article  CAS  Google Scholar 

  9. Wu, S., Pan, Z., Chen, R. & Liu, X. Long Afterglow Phosphorescent Materials (Springer, 2017).

  10. Kabe, R. & Adachi, C. Organic long persistent luminescence. Nature 550, 384–387 (2017).

    Article  CAS  Google Scholar 

  11. Jinnai, K., Nishimura, N., Kabe, R. & Adachi, C. Fabrication-method independence of organic long-persistent luminescence performance. Chem. Lett. 48, 270–273 (2019).

    Article  CAS  Google Scholar 

  12. Lin, Z., Kabe, R., Nishimura, N., Jinnai, K. & Adachi, C. Organic long-persistent luminescence from a flexible and transparent doped polymer. Adv. Mater. 30, 1803713 (2018).

    Article  Google Scholar 

  13. Jinnai, K., Kabe, R. & Adachi, C. Wide-range tuning and enhancement of organic long-persistent luminescence using emitter dopants. Adv. Mater. 30, 1800365 (2018).

    Article  Google Scholar 

  14. Hirata, S. Recent advances in materials with room-temperature phosphorescence: photophysics for triplet exciton stabilization. Adv. Opt. Mater. 5, 1700116 (2017).

    Article  Google Scholar 

  15. Notsuka, N., Kabe, R., Goushi, K. & Adachi, C. Confinement of long-lived triplet excitons in organic semiconducting host-guest systems. Adv. Funct. Mater. 27, 1703902 (2017).

    Article  Google Scholar 

  16. Nishimura, N., Lin, Z., Jinnai, K., Kabe, R. & Adachi, C. Many exciplex systems exhibit organic long‐persistent luminescence. Adv. Funct. Mater. 30, 2000795 (2020).

    Article  CAS  Google Scholar 

  17. Lin, Z., Kabe, R., Wang, K. & Adachi, C. Influence of energy gap between charge-transfer and locally excited states on organic long persistence luminescence. Nat. Commun. 11, 191 (2020).

    Article  CAS  Google Scholar 

  18. Bhattacharjee, I. & Hirata, S. Highly efficient persistent room‐temperature phosphorescence from heavy atom‐free molecules triggered by hidden long phosphorescent antenna. Adv. Mater. 32, 2001348 (2020).

    Article  CAS  Google Scholar 

  19. Alam, P. et al. Two are better than one: a design principle for ultralong‐persistent luminescence of pure organics. Adv. Mater. 32, 2001026 (2020).

    Article  CAS  Google Scholar 

  20. Usta, H. et al. Design, synthesis, and characterization of ladder-type molecules and polymers. Air-stable, solution-processable n-channel and ambipolar semiconductors for thin-film transistors via experiment and theory. J. Am. Chem. Soc. 131, 5586–5608 (2009).

    Article  CAS  Google Scholar 

  21. de Leeuw, D. M., Simenon, M. M. J., Brown, A. R. & Einerhand, R. E. F. Stability of n-type doped conducting polymers and consequences for polymeric microelectronic devices. Synth. Met. 87, 53–59 (1997).

    Article  Google Scholar 

  22. Zhou, K., Dong, H., Zhang, H. & Hu, W. High performance n-type and ambipolar small organic semiconductors for organic thin film transistors. Phys. Chem. Chem. Phys. 16, 22448–22457 (2014).

    Article  CAS  Google Scholar 

  23. Romero, N. A. & Nicewicz, D. A. Organic photoredox catalysis. Chem. Rev. 116, 10075–10166 (2016).

    Article  CAS  Google Scholar 

  24. Fukuzumi, S. et al. Electron-transfer state of 9-mesityl-10-methylacridinium ion with a much longer lifetime and higher energy than that of the natural photosynthetic reaction center. J. Am. Chem. Soc. 126, 1600–1601 (2004).

    Article  CAS  Google Scholar 

  25. Todd, W. P., Dinnocenzo, J. P., Farid, S., Goodman, J. L. & Gould, I. R. Efficient photoinduced generation of radical cations in solvents of medium and low polarity. J. Am. Chem. Soc. 113, 3601–3602 (1991).

    Article  CAS  Google Scholar 

  26. Jia, D. Charging curves and excitation spectrum of long persistent phosphor SrAl2O4:Eu2+,Dy3+. Opt. Mater. (Amst.). 22, 65–69 (2003).

    Article  CAS  Google Scholar 

  27. Jia, D., Zhu, J. & Wu, B. Correction of excitation spectra of long persistent phosphors. J. Lumin. 90, 33–37 (2000).

    Article  CAS  Google Scholar 

  28. Wintgens, V., Pouliquen, J., Kossanyi, J., Williams, J. L. R. & Doty, J. C. Emission of substituted pyrylium and thiapyrylium salts: phosphorescence and delayed fluorescence emission in polymeric matrices. Polym. Photochem. 6, 1–20 (1985).

    Article  CAS  Google Scholar 

  29. Farid, S., Dinnocenzo, J. P., Merkel, P. B., Young, R. H. & Shukla, D. Bimolecular electron transfers that follow a Sandros−Boltzmann dependence on free energy. J. Am. Chem. Soc. 133, 4791–4801 (2011).

    Article  CAS  Google Scholar 

  30. Perkowski, A. J., You, W. & Nicewicz, D. A. Visible light photoinitiated metal-free living cationic polymerization of 4-methoxystyrene. J. Am. Chem. Soc. 137, 7580–7583 (2015).

    Article  CAS  Google Scholar 

  31. Schrögel, P. et al. Meta-linked CBP-derivatives as host materials for a blue iridium carbene complex. Org. Electron. 12, 2047–2055 (2011).

    Article  Google Scholar 

  32. Jiang, Z.-L., Tian, W., Kou, Z.-Q., Cheng, S. & Li, Y.-H. The influence of the mixed host emitting layer based on the TCTA and TPBi in blue phosphorescent OLED. Opt. Commun. 372, 49–52 (2016).

    Article  CAS  Google Scholar 

  33. Kuwabara, Y., Ogawa, H., Inada, H., Noma, N. & Shirota, Y. Thermally stable multilared organic electroluminescent devices using novel starburst molecules, 4,4′,4″-tri(N-carbazolyl)triphenylamine (TCTA) and 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine (m-MTDATA), as hole-transport materials. Adv. Mater. 6, 677–679 (1994).

    Article  CAS  Google Scholar 

  34. Gao, W. & Kahn, A. Controlled p doping of the hole-transport molecular material NN′-diphenyl-NN′-bis(1-naphthyl)-11′-biphenyl-44′-diamine with tetrafluorotetracyanoquinodimethane. J. Appl. Phys. 94, 359–366 (2003).

    Article  CAS  Google Scholar 

  35. Fan, C. et al. Dibenzothiophene-based phosphine oxide host and electron-transporting materials for efficient blue thermally activated delayed fluorescence diodes through compatibility optimization. Chem. Mater. 27, 5131–5140 (2015).

    Article  CAS  Google Scholar 

  36. Jinnai, K., Nishimura, N., Adachi, C. & Kabe, R. Thermally activated processes in an organic long-persistent luminescence system. Nanoscale 13, 8412–8417 (2021).

    Article  CAS  Google Scholar 

  37. Goushi, K., Yoshida, K., Sato, K. & Adachi, C. Organic light-emitting diodes employing efficient reverse intersystem crossing for triplet-to-singlet state conversion. Nat. Photon. 6, 253–258 (2012).

    Article  CAS  Google Scholar 

  38. Hamill, W. H. Debye–Edwards electron recombination kinetics. J. Chem. Phys. 71, 140–142 (1979).

    Article  CAS  Google Scholar 

  39. Tachiya, M. & Seki, K. Unified explanation of the fluorescence decay and blinking characteristics of semiconductor nanocrystals. Appl. Phys. Lett. 94, 081104 (2009).

    Article  Google Scholar 

  40. Niizuma, S. et al. Free radicals produced from the derivatives of pyrylium salts in solution by photoillumination. Bull. Chem. Soc. Jpn. 58, 2600–2607 (1985).

    Article  CAS  Google Scholar 

  41. Miranda, M. A. & García, H. 2,4,6-Triphenylpyrylium tetrafluoroborate as an electron-transfer photosensitizer. Chem. Rev. 94, 1063–1089 (1994).

    Article  CAS  Google Scholar 

  42. Grancini, G. et al. Hot exciton dissociation in polymer solar cells. Nat. Mater. 12, 29–33 (2013).

    Article  CAS  Google Scholar 

  43. Gelinas, S. et al. Ultrafast long-range charge separation in organic semiconductor photovoltaic diodes. Science 343, 512–516 (2014).

    Article  CAS  Google Scholar 

  44. Lochner, C. M., Khan, Y., Pierre, A. & Arias, A. C. All-organic optoelectronic sensor for pulse oximetry. Nat. Commun. 5, 5745 (2014).

    Article  CAS  Google Scholar 

  45. Sakurai, M. et al. Organic photostimulated luminescence associated with persistent spin-correlated radical pairs. Commun. Mater. 2, 74 (2021).

    Article  Google Scholar 

  46. Ueda, J., Harada, M., Miyano, S., Yamada, A. & Tanabe, S. Pressure-induced variation of persistent luminescence characteristics in Y3Al5−xGaxO12:Ce3+–M3+ (M = Yb, and Cr) phosphors: opposite trend of trap depth for 4f and 3d metal ions. Phys. Chem. Chem. Phys. 22, 19502–19511 (2020).

    Article  CAS  Google Scholar 

  47. Hasebe, N. et al. Absolute phosphorescence quantum yields of singlet molecular oxygen in solution determined using an integrating sphere instrument. Anal. Chem. 87, 2360–2366 (2015).

    Article  CAS  Google Scholar 

  48. Akaba, R., Sakuragi, H. & Tokumaru, K. Triphenylpyrylium-salt-sensitized electron transfer oxygenation of adamantylideneadamantane. Product, fluorescence quenching, and laser flash photolysis studies. J. Chem. Soc. Perkin Trans. 2 1, 291–297 (1991).

    Article  Google Scholar 

  49. Baldo, M. A., O’Brien, D. F., Thompson, M. E. & Forrest, S. R. Excitonic singlet–triplet ratio in a semiconducting organic thin film. Phys. Rev. B 60, 14422–14428 (1999).

    Article  CAS  Google Scholar 

  50. Liu, Y., Liu, M. S. & Jen, A. K.-Y. Synthesis and characterization of a novel and highly efficient light-emitting polymer. Acta Polym. 50, 105–108 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Japan Science and Technology Agency (JST) FOREST project (grant number JPMJFR201H); JST ERATO, Adachi Molecular Exciton Engineering Project (grant number JPMJER1305); JSPS KAKENHI (grant numbers JP18H02049 and JP21H02020); JSPS Core-to-core project; the International Institute for Carbon Neutral Energy Research (WPI-I2CNER) sponsored by the Ministry of Education, Culture, Sports, Science, and Technology (MEXT), the OIST Proof of Concept (POC) Programme; and the Kyushu University Platform of Inter/Transdisciplinary Energy Research, young researcher/doctor student support programme. We thank K. Tokumaru for helpful discussions. We thank K. Kusuhara and N. Nakamura for their assistance with the preparation of TPBi, mCBP and TCTA.

Author information

Authors and Affiliations

Authors

Contributions

K.J. and R.K. designed this project. K.J. and R.K. carried out all the experiments. K.J and Z.L. performed the electrochemical and in situ spectroelectrochemical measurements. K.J. and R.K. analysed all data. R.K and C.A. supervised the project. All authors contributed to writing the paper and critically commented on the project.

Corresponding authors

Correspondence to Ryota Kabe or Chihaya Adachi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Hugo Bronstein and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–14 and Table 1.

Supplementary Video 1

A melt casted TPP+/TPBi/TCTA sample was crashed and dispersed into water without nitrogen bubbling in NMR tube. Sample was photoexcited at 365 nm at room temperature.

Supplementary Video 2

LPL emission of TPP+/TPBi in air (top, left), TPP+/TPBi/TCTA in air (top, right), TPP+/TPBi in N2 (bottom, left) and TPP+/TPBi/TCTA in N2 (bottom, right).

Source data

Source Data Fig. 2

This contains data plotted in Figs. 2a, 2b (both panels) and 2c.

Source Data Fig. 3

This contains data plotted in Figs. 3a, 3b and 3d (both panels).

Source Data Fig. 4

This contains data plotted in Figs. 4a, 4b, 4c and 4d.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jinnai, K., Kabe, R., Lin, Z. et al. Organic long-persistent luminescence stimulated by visible light in p-type systems based on organic photoredox catalyst dopants. Nat. Mater. 21, 338–344 (2022). https://doi.org/10.1038/s41563-021-01150-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01150-9

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing