Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence


Optically addressable spin defects in silicon carbide (SiC) are an emerging platform for quantum information processing compatible with nanofabrication processes and device control used by the semiconductor industry. System scalability towards large-scale quantum networks demands integration into nanophotonic structures with efficient spin–photon interfaces. However, degradation of the spin-optical coherence after integration in nanophotonic structures has hindered the potential of most colour centre platforms. Here, we demonstrate the implantation of silicon vacancy centres (VSi) in SiC without deterioration of their intrinsic spin-optical properties. In particular, we show nearly lifetime-limited photon emission and high spin-coherence times for single defects implanted in bulk as well as in nanophotonic waveguides created by reactive ion etching. Furthermore, we take advantage of the high spin-optical coherences of VSi centres in waveguides to demonstrate controlled operations on nearby nuclear spin qubits, which is a crucial step towards fault-tolerant quantum information distribution based on cavity quantum electrodynamics.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Properties of He+ ion-implanted V2 centres.
Fig. 2: Properties of V2 centres in nanofabricated waveguides.
Fig. 3: Electron spin properties of nanofabricated V2 centres.
Fig. 4: Control over nuclear spin qubits.

Similar content being viewed by others

Data availability

Source data are provided with this paper and at Any further data are available from the corresponding author upon request.

Code availability

Fits to the data were made using Python software. The fit functions, parameters and simulations of hyperfine interactions can be made available upon request.


  1. Buhrman, H., Cleve, R., Massar, S. & De Wolf, R. Nonlocality and communication complexity. Rev. Mod. Phys. 82, 665–698 (2010).

    Article  Google Scholar 

  2. Barz, S. et al. Demonstration of blind quantum computing. Science 335, 303–309 (2012).

    Article  CAS  Google Scholar 

  3. Gottesman, D., Jennewein, T. & Croke, S. Longer-baseline telescopes using quantum repeaters. Phys. Rev. Lett. 109, 070503 (2012).

    Article  Google Scholar 

  4. Borregaard, J. et al. One-way quantum repeater based on near-deterministic photon-emitter interfaces. Phys. Rev. X 10, 021071 (2020).

    CAS  Google Scholar 

  5. Atatüre, M., Englund, D., Vamivakas, N., Lee, S. Y. & Wrachtrup, J. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3, 38–51 (2018).

    Article  Google Scholar 

  6. Awschalom, D. D., Hanson, R., Wrachtrup, J. & Zhou, B. B. Quantum technologies with optically interfaced solid-state spins. Nat. Photon. 12, 516–527 (2018).

    Article  CAS  Google Scholar 

  7. Pompili, M. et al. Realization of a multi-node quantum network of remote solid-state qubits. Science 372, 259–264 (2021).

    Article  CAS  Google Scholar 

  8. Waldherr, G. et al. Quantum error correction in a solid-state hybrid spin register. Nature 506, 204–207 (2014).

    Article  CAS  Google Scholar 

  9. Kalb, N. et al. Entanglement distillation between solid-state quantum network nodes. Science 356, 928–932 (2017).

    Article  CAS  Google Scholar 

  10. Rozpȩdek, F. et al. Near-term quantum-repeater experiments with nitrogen-vacancy centers: overcoming the limitations of direct transmission. Phys. Rev. A 99, 052330 (2019).

    Article  Google Scholar 

  11. Janitz, E., Bhaskar, M. K. & Childress, L. Cavity quantum electrodynamics with color centers in diamond. Optica 7, 1232–1252 (2020).

    Article  Google Scholar 

  12. Bracher, D. O., Zhang, X. & Hu, E. L. Selective Purcell enhancement of two closely linked zero-phonon transitions of a silicon carbide color center. Proc. Natl Acad. Sci. USA 114, 4060–4065 (2017).

    Article  CAS  Google Scholar 

  13. Crook, A. L. et al. Purcell enhancement of a single silicon carbide color center with coherent spin control. Nano Lett. 20, 3427–3434 (2020).

    Article  CAS  Google Scholar 

  14. Abobeih, M. H. et al. Atomic-scale imaging of a 27-nuclear-spin cluster using a quantum sensor. Nature 576, 411–415 (2019).

    Article  CAS  Google Scholar 

  15. Bourassa, A. et al. Entanglement and control of single nuclear spins in isotopically engineered silicon carbide. Nat. Mater. 19, 1319–1325 (2020).

    Article  CAS  Google Scholar 

  16. Myers, B. A. et al. Probing surface noise with depth-calibrated spins in diamond. Phys. Rev. Lett. 113, 027602 (2014).

    Article  CAS  Google Scholar 

  17. Sangtawesin, S. et al. Origins of diamond surface noise probed by correlating single-spin measurements with surface spectroscopy. Phys. Rev. X 9, 031052 (2019).

    CAS  Google Scholar 

  18. Riedel, D. et al. Deterministic enhancement of coherent photon generation from a nitrogen-vacancy center in ultrapure diamond. Phys. Rev. X 7, 031040 (2017).

    Google Scholar 

  19. Ruf, M., Weaver, M. J., Van Dam, S. B. & Hanson, R. Resonant excitation and Purcell enhancement of coherent nitrogen-vacancy centers coupled to a Fabry-Perot microcavity. Phys. Rev. Appl. 15, 024049 (2021).

    Article  CAS  Google Scholar 

  20. Schröder, T. et al. Quantum nanophotonics in diamond [Invited]. J. Opt. Soc. Am. B 33, B65–B83 (2016).

    Article  Google Scholar 

  21. Chu, Y. et al. Coherent optical transitions in implanted nitrogen vacancy centers. Nano Lett. 14, 1982–1986 (2014).

    Article  CAS  Google Scholar 

  22. Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).

    Article  Google Scholar 

  23. Bradac, C., Gao, W., Forneris, J., Trusheim, M. E. & Aharonovich, I. Quantum nanophotonics with group IV defects in diamond. Nat. Commun. 10, 5625 (2019).

    Article  CAS  Google Scholar 

  24. Nguyen, C. T. et al. Quantum network nodes based on diamond qubits with an efficient nanophotonic interface. Phys. Rev. Lett. 123, 183602 (2019).

    Article  CAS  Google Scholar 

  25. Nguyen, C. T. et al. An integrated nanophotonic quantum register based on silicon-vacancy spins in diamond. Phys. Rev. B 100, 165428 (2019).

    Article  CAS  Google Scholar 

  26. Udvarhelyi, P. et al. Vibronic states and their effect on the temperature and strain dependence of silicon-vacancy qubits in 4H-Si C. Phys. Rev. Appl. 13, 054017 (2020).

    Article  CAS  Google Scholar 

  27. Udvarhelyi, P. et al. Spectrally stable defect qubits with no inversion symmetry for robust spin-to-photon interface. Phys. Rev. Appl. 11, 044022 (2019).

    Article  CAS  Google Scholar 

  28. Simin, D. et al. Locking of electron spin coherence above 20 ms in natural silicon carbide. Phys. Rev. B 95, 161201 (2017).

    Article  Google Scholar 

  29. Nagy, R. et al. High-fidelity spin and optical control of single silicon-vacancy centres in silicon carbide. Nat. Commun. 10, 1954 (2019).

    Article  Google Scholar 

  30. Morioka, N. et al. Spin-controlled generation of indistinguishable and distinguishable photons from silicon vacancy centres in silicon carbide. Nat. Commun. 11, 2516 (2020).

    Article  CAS  Google Scholar 

  31. Ohshima, T. et al. Creation of silicon vacancy in silicon carbide by proton beam writing toward quantum sensing applications. J. Phys. D: Appl. Phys. 51, 333002 (2018).

    Article  Google Scholar 

  32. Pavunny, S. P. et al. Arrays of Si vacancies in 4H-SiC produced by focused Li ion beam implantation. Sci. Rep. 11, 3561 (2021).

    Article  CAS  Google Scholar 

  33. Chen, Y. C. et al. Laser writing of scalable single color centers in silicon carbide. Nano Lett. 19, 2377–2383 (2019).

    Article  Google Scholar 

  34. Wang, J. F. et al. On-Demand generation of single silicon vacancy defects in silicon carbide. ACS Photonics 6, 1736–1743 (2019).

    Article  CAS  Google Scholar 

  35. Majety, S. et al. Quantum photonics in triangular-cross-section nanodevices in silicon carbide. J. Phys.: Photonics 3, 034008 (2021).

    CAS  Google Scholar 

  36. Shang, Z. et al. Local vibrational modes of Si vacancy spin qubits in SiC. Phys. Rev. B 101, 144109 (2020).

    Article  CAS  Google Scholar 

  37. Kraus, H. et al. Room-temperature quantum microwave emitters based on spin defects in silicon carbide. Nat. Phys. 10, 157–162 (2014).

    Article  CAS  Google Scholar 

  38. Banks, H. B. et al. Resonant optical spin initialization and readout of single silicon vacancies in 4H-SiC. Phys. Rev. Appl. 11, 024013 (2019).

    Article  CAS  Google Scholar 

  39. Fuchs, F. et al. Engineering near-infrared single-photon emitters with optically active spins in ultrapure silicon carbide. Nat. Commun. 6, 7578 (2015).

    Article  CAS  Google Scholar 

  40. Evans, R. E., Sipahigil, A., Sukachev, D. D., Zibrov, A. S. & Lukin, M. D. Narrow-linewidth homogeneous optical emitters in diamond nanostructures via silicon ion implantation. Phys. Rev. Appl. 5, 044010 (2016).

    Article  Google Scholar 

  41. Ishikawa, T. et al. Optical and spin coherence properties of nitrogen-vacancy centers placed in a 100 nm thick isotopically purified diamond layer. Nano Lett. 12, 2083–2087 (2012).

    Article  CAS  Google Scholar 

  42. Yan, F. F. et al. Room-temperature coherent control of implanted defect spins in silicon carbide. npj Quantum Inf. 6, 38 (2020).

    Article  Google Scholar 

  43. Van Dam, S. B. et al. Optical coherence of diamond nitrogen-vacancy centers formed by ion implantation and annealing. Phys. Rev. B 99, 161203 (2019).

    Article  Google Scholar 

  44. Lukin, D. M. et al. 4H-silicon-carbide-on-insulator for integrated quantum and nonlinear photonics. Nat. Photon. 14, 330–334 (2020).

    Article  CAS  Google Scholar 

  45. Radulaski, M. et al. Scalable quantum photonics with single color centers in silicon carbide. Nano Lett. 17, 1782–1786 (2017).

    Article  CAS  Google Scholar 

  46. Bhaskar, M. K. et al. Experimental demonstration of memory-enhanced quantum communication. Nature 580, 60–64 (2020).

    Article  CAS  Google Scholar 

  47. Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    Article  CAS  Google Scholar 

  48. Dory, C. et al. Inverse-designed diamond photonics. Nat. Commun. 10, 3309 (2019).

    Article  Google Scholar 

  49. Rugar, A. E. et al. Narrow-linewidth tin-vacancy centers in a diamond waveguide. ACS Photonics 7, 2356–2361 (2020).

    Article  CAS  Google Scholar 

  50. Taminiau, T. H. et al. Detection and control of individual nuclear spins using a weakly coupled electron spin. Phys. Rev. Lett. 109, 137602 (2012).

    Article  CAS  Google Scholar 

  51. Taminiau, T. H., Cramer, J., Van Der Sar, T., Dobrovitski, V. V. & Hanson, R. Universal control and error correction in multi-qubit spin registers in diamond. Nat. Nanotechnol. 9, 171–176 (2014).

    Article  CAS  Google Scholar 

  52. Burek, M. J. et al. Fiber-coupled diamond quantum nanophotonic interface. Phys. Rev. Appl. 8, 024026 (2017).

    Article  Google Scholar 

  53. Rühl, M., Bergmann, L., Krieger, M. & Weber, H. B. Stark tuning of the silicon vacancy in silicon carbide. Nano Lett. 20, 658–663 (2020).

    Article  Google Scholar 

  54. Lukin, D. M. et al. Spectrally reconfigurable quantum emitters enabled by optimized fast modulation. npj Quantum Inf. 6, 80 (2020).

    Article  Google Scholar 

  55. Guidry, M. A. et al. Optical parametric oscillation in silicon carbide nanophotonics. Optica 7, 1139–1142 (2020).

    Article  CAS  Google Scholar 

  56. Nagy, R. et al. Narrow inhomogeneous distribution of spin-active emitters in silicon carbide. Appl. Phys. Lett. 118, 044001 (2021).

    Article  Google Scholar 

Download references


C.B., F.K. and J.W. thank A. Weible, R. Reuter, A. Zechmeister, J. Meinel, R. Nagy, J. Körber, M. Krumrein, M. Joliffe, M. Niethammer, I. Gediz, J. Zatsch, D. Dasari, Y.-C. Chen, K.-M. Fu, D. Lukin and J. Vučković for experimental assistance and fruitful discussions. We further acknowledge technical support from Swabian Instruments GmbH and Toptica Photonics AG. G.V.A. thanks U. Kentsch for the proton implantation assistance and support from the Ion Beam Centre at Helmholtz-Zentrum Dresden-Rossendorf (HZDR). N.T.S. acknowledges the Swedish Research Council (grant no. VR 2016-04068). J.U.-H. acknowledges the Swedish Energy Agency (grant no. 43611-1) and Swedish Research Council (grant no. 2020-05444). N.T.S. and J.U.-H. thank the EU H2020 project QuanTELCO (grant no. 862721) and the Knut and Alice Wallenberg Foundation (grant no. KAW 2018.0071). S.M. acknowledges support by the UC Davis Summer GSR Award. M.R. acknowledges support by the National Science Foundation under the grant CAREER-2047564. J.W. acknowledges the EU-FET Flagship on Quantum Technologies through the project ASTERIQS (grant agreement no. 820394), the European Research Council (ERC) grant SMel, the Max Planck Society and the German Research Foundation (SPP 1601, FOR 2724). F.K. and J.W. acknowledge support by the EU-FET Flagship on Quantum Technologies through the project QIA (grant agreement no. 820445), as well as the German Federal Ministry of Education and Research (BMBF) for the project Q.Link.X (grant agreement no. 16KIS0867).

Author information

Authors and Affiliations



C.B. and F.K. conceived the experiments. F.K. and J.W. directed the research. R.S., T.L., R.W. and A.D. produced masks and performed helium ion implantation. C.G. and P.B. performed helium implantation simulations. R.S., T.L., R.W. and G.V.A. produced masks and designed proton implantation. M.H. performed silicon ion implantation. W.K. performed electron irradiation. C.B., R.S. and T.L. produced SiC waveguides. V.V., S.M., P.S. and M.R. simulated beam profiles in waveguides. N.T.S. and J.U.-H. grew the SiC samples. C.B., N.M., T.L., T.S., R.W., D.L., E.H. and F.K. performed the experiments. C.B., N.M., T.L., T.S., D.L. and F.K. developed and improved software. C.B., R.W. and F.K. analysed the data. C.B. and F.K. developed the theoretical framework for nuclear spin control. C.B., M.R., F.K. and J.W. wrote the manuscript. All authors provided helpful comments during the writing process.

Corresponding author

Correspondence to Florian Kaiser.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Information, including 18 figures.

Supplementary Data 1

Data for Supplementary Fig. 1.

Supplementary Data 2

Data for Supplementary Fig. 2.

Supplementary Data 3

Data for Supplementary Fig. 3.

Supplementary Data 4

Data for Supplementary Fig. 4.

Supplementary Data 5

Data for Supplementary Fig. 5.

Supplementary Data 6

Data for Supplementary Fig. 6.

Supplementary Data 7

Data for Supplementary Fig. 7.

Supplementary Data 8

Data for Supplementary Fig. 8.

Supplementary Data 9

Data for Supplementary Fig. 9.

Supplementary Data 10

Data for Supplementary Fig. 10.

Supplementary Data 12

Data for Supplementary Fig. 12.

Supplementary Data 13

Data for Supplementary Fig. 13.

Supplementary Data 14

Data for Supplementary Fig. 14.

Supplementary Data 15

Data for Supplementary Fig. 15.

Supplementary Data 16

Data for Supplementary Fig. 16.

Supplementary Data 17

Data for Supplementary Fig. 17.

Supplementary Data 18

Data for Supplementary Fig. 18.

Source data

Fig. 1

Source data for all panels.

Fig. 2

Source data for all panels.

Fig. 3

Source data for all panels.

Fig. 4

Source data for all panels.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Babin, C., Stöhr, R., Morioka, N. et al. Fabrication and nanophotonic waveguide integration of silicon carbide colour centres with preserved spin-optical coherence. Nat. Mater. 21, 67–73 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing