Abstract
Ferrimagnets composed of multiple and antiferromagnetically coupled magnetic elements have attracted much attention recently as a material platform for spintronics. They offer the combined advantages of both ferromagnets and antiferromagnets, namely the easy control and detection of their net magnetization by an external field, antiferromagnetic-like dynamics faster than ferromagnetic dynamics and the potential for high-density devices. This Review summarizes recent progress in ferrimagnetic spintronics, with particular attention to the most-promising functionalities of ferrimagnets, which include their spin transport, spin texture dynamics and all-optical switching.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Magnetization reversal through an antiferromagnetic state
Nature Communications Open Access 24 August 2023
-
Direct observation of Néel-type skyrmions and domain walls in a ferrimagnetic DyCo3 thin film
Communications Physics Open Access 18 August 2023
-
Ultrathin ferrite nanosheets for room-temperature two-dimensional magnetic semiconductors
Nature Communications Open Access 06 September 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 / 30 days
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout






References
Néel, L. Antiferromagnetism and ferrimagnetism. Proc. Phys. Soc. A 65, 869 (1952).
Dionne, G. F. A review of ferrites for microwave applications. Proc. IEEE 63, 777–789 (1975).
Serga, A. A., Chumak, A. V. & Hillebrands, B. YIG magnonics. J. Phys. D 43, 264002 (2010).
Chaudhari, P., Cuomo, J. J. & Gambino, R. J. Amorphous metallic films for magneto-optic applications. Appl. Phys. Lett. 42, 202 (1973).
Carey, R., Newman, D. M. & Thomas, B. W. J. Magneto-optic recording. J. Phys. D 28, 2207–2227 (1995).
Hansen, P. et al. Magnetic and magneto‐optical properties of rare‐earth transition‐metal alloys containing Gd, Tb, Fe, Co. J. Appl. Phys. 66, 756 (1989).
Tsunashima, S. Magneto-optical recording. J. Phys. D 34, R87–R102 (2001).
Focus on antiferromagnetic spintronics. Nat. Phys. https://www.nature.com/collections/wplplmmvnt (2018).
Baltz, V. et al. Antiferromagnetic spintronics. Rev. Mod. Phys. 90, 015005 (2018).
Stanciu, C. D. et al. All-optical magnetic recording with circularly polarized light. Phys. Rev. Lett. 99, 047601 (2007).
Radu, I. et al. Transient ferromagnetic-like state mediating ultrafast reversal of antiferromagnetically coupled spins. Nature 472, 205–208 (2011).
Mentink, J. H. et al. Ultrafast spin dynamics in multisublattice magnets. Phys. Rev. Lett. 108, 057202 (2012).
Davies, C. S. et al. Pathways for single-shot all-optical switching of magnetization in ferrimagnets. Phys. Rev. Appl. 13, 024064 (2020).
Ostler, T. A. et al. Ultrafast heating as a sufficient stimulus for magnetization reversal in a ferrimagnet. Nat. Commun. 3, 666 (2012).
Evans, R. F. L., Ostler, T. A., Chantrell, R. W., Radu, I. & Rasing, T. Ultrafast thermally induced magnetic switching in synthetic ferrimagnets. Appl. Phys. Lett. 104, 082410 (2014).
Mangin, S. et al. Engineered materials for all-optical helicity-dependent magnetic switching. Nat. Mater. 13, 286–292 (2014).
Beaurepaire, E., Merle, J.-C., Daunois, A. & Bigot, J.-Y. Ultrafast spin dynamics in ferromagnetic nickel. Phys. Rev. Lett. 76, 4250–4253 (1996).
Hennecke, M. et al. Angular momentum flow during ultrafast demagnetization of a ferrimagnet. Phys. Rev. Lett. 122, 157202 (2019).
Kim, K.-J. et al. Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets. Nat. Mater. 16, 1187–1192 (2017).
Caretta, L. et al. Fast current-driven domain walls and small skyrmions in a compensated ferrimagnet. Nat. Nanotechnol. 13, 1154–1160 (2018).
Siddiqui, S. A., Han, J., Finley, J. T., Ross, C. A. & Liu, L. Current-induced domain wall motion in a compensated ferrimagnet. Phys. Rev. Lett. 121, 057701 (2018).
Bläsing, R. et al. Exchange coupling torque in ferrimagnetic Co/Gd bilayer maximized near angular momentum compensation temperature. Nat. Commun. 9, 4984 (2018).
Avci, C. O. et al. Interface-driven chiral magnetism and current-driven domain walls in insulating magnetic garnets. Nat. Nanotechnol. 14, 561–566 (2019).
Cai, K. et al. Ultrafast and energy-efficient spin–orbit torque switching in compensated ferrimagnets. Nat. Electron. 3, 37–42 (2020).
Ghosh, S. et al. Current-driven domain wall dynamics in ferrimagnetic nickel-doped Mn4N films: very large domain wall velocities and reversal of motion direction across the magnetic compensation point. Nano Lett. 21, 2580–2587 (2021).
Kim, S. K., Lee, K.-J. & Tserkovnyak, Y. Self-focusing skyrmion racetracks in ferrimagnets. Phys. Rev. B 95, 140404(R) (2017).
Hirata, Y. et al. Vanishing skyrmion Hall effect at the angular momentum compensation temperature of a ferrimagnet. Nat. Nanotechnol. 14, 232–236 (2019).
Oh, S.-H. et al. Coherent terahertz spin-wave emission associated with ferrimagnetic domain walls. Phys. Rev. B 96, 100407(R) (2017).
Oh, S.-H. & Lee, K.-J. Ferrimagnetic domain wall motion induced by damping-like spin–orbit torque. J. Magn. 23, 196–200 (2018).
Yu, J. et al. Long spin coherence length and bulk-like spin–orbit torque in ferrimagnetic multilayers. Nat. Mater. 18, 29–34 (2019).
Lim, Y. et al. Dephasing of transverse spin current in ferrimagnetic alloys. Phys. Rev. B 103, 024443 (2021).
Okuno, T. et al. Spin-transfer torques for domain wall motion in antiferromagnetically coupled ferrimagnets. Nat. Electron. 2, 389–393 (2019).
Koopmans, B., Ruigrok, J. J. M., Dalla Longa, F. & de Jonge, W. J. M. Unifying ultrafast magnetization dynamics. Phys. Rev. Lett. 95, 267207 (2005).
Singh, N., Elliott, P., Dewhurst, J. K., Gross, E. K. U. & Sharma, S. Ab‐initio real‐time magnon dynamics in ferromagnetic and ferrimagnetic systems. Phys. Status Solidi B 257, 1900654 (2020).
Koopmans, B. et al. Explaining the paradoxical diversity of ultrafast laser-induced demagnetization. Nat. Mater. 9, 259–265 (2010).
Wietstruck, M. et al. Hot-electron-driven enhancement of spin-lattice coupling in Gd and Tb 4f ferromagnets observed by femtosecond X-ray magnetic circular dichroism. Phys. Rev. Lett. 106, 127401 (2011).
Radu, I. et al. Ultrafast and distinct spin dynamics in magnetic alloys. Spin 5, 1550004 (2015).
Mentink, J. Magnetism on the Timescale of the Exchange Interaction: Explanations and Predictions. PhD thesis, Radboud Univ. (2012).
Campbell, I. A. Indirect exchange for rare earths in metals. J. Phys. F 2, L47 (1972).
Buschow, K. H. J. Intermetallic compounds of rare-earth and 3d transition metals. Rep. Prog. Phys. 40, 1179 (1977).
Lang, J. K., Baer, Y. & Cox, P. A. Study of the 4f levels in rare-earth metals by high-energy spectroscopies. Phys. Rev. Lett. 42, 74 (1979).
Bar’yakhtar, V. G. Phenomenological description of relaxation processes in magnetic materials. Sov. Phys. JETP 60, 863–867 (1984).
Bar’yakhtar, V. G. Crystal symmetry and the structure of the relaxation terms in the antiferromagnet dynamic equations of motion. Sov. Phys. JETP 67, 757 (1988).
Bar’yakhtar, V. G., Butrim, V. I. & Ivanov, B. A. Exchange relaxation as a mechanism of the ultrafast reorientation of spins in a two-sublattice ferrimagnet. JETP Lett. 98, 289–293 (2013).
Wienholdt, S., Hinzke, D., Carva, K., Oppeneer, P. M. & Nowak, U. Orbital-resolved spin model for thermal magnetization switching in rare-earth-based ferrimagnets. Phys. Rev. B 88, 020406(R) (2013).
Schellekens, A. J. & Koopmans, B. Microscopic model for ultrafast magnetization dynamics of multisublattice magnets. Phys. Rev. B 87, 020407(R) (2013).
Barker, J. & Atxitia, U. A review of modelling in ferrimagnetic spintronics. J. Phys. Soc. Jpn 90, 081001 (2021).
Lalieu, M. L. M., Peeters, M. J. G., Haenen, S. R. R., Lavrijsen, R. & Koopmans, B. Deterministic all-optical switching of synthetic ferrimagnets using single femtosecond laser pulses. Phys. Rev. B 96, 220411(R) (2017).
Avilés-Félix, L. et al. Single-shot all-optical switching of magnetization in Tb/Co multilayer-based electrodes. Sci. Rep. 10, 5211 (2020).
Khorsand, A. R. et al. Role of magnetic circular dichroism in all-optical magnetic recording. Phys. Rev. Lett. 108, 127205 (2012).
Atxitia, U., Barker, J., Chantrell, R. W. & Chubykalo-Fesenko, O. Controlling the polarity of the transient ferromagneticlike state in ferrimagnets. Phys. Rev. B 89, 224421 (2014).
Steil, D., Alebrand, S., Hassdenteufel, A., Cinchetti, M. & Aeschlimann, M. All-optical magnetization recording by tailoring optical excitation parameters. Phys. Rev. B 84, 224408 (2011).
Yang, Y. et al. Ultrafast magnetization reversal by picosecond electrical pulses. Sci. Adv. 3, e1603117 (2017).
Finazzi, M. et al. Laser-induced magnetic nanostructures with tunable topological properties. Phys. Rev. Lett. 110, 177205 (2013).
Banerjee, C. et al. Single pulse all-optical toggle switching of magnetization without gadolinium in the ferrimagnet Mn2RuxGa. Nat. Commun. 11, 4444 (2020).
Davies, C. S. et al. Exchange-driven all-optical magnetic switching in compensated 3d ferrimagnets. Phys. Rev. Res. 2, 032044(R) (2020).
Stupakiewicz, A., Szerenos, K., Afanasiev, D., Kirilyuk, A. & Kimel, A. V. Ultrafast nonthermal photo-magnetic recording in a transparent medium. Nature 542, 71–74 (2017).
Wang, S. et al. Dual-shot dynamics and ultimate frequency of all-optical magnetic recording on GdFeCo. Light Sci. Appl. 10, 8 (2021).
El-Ghazaly, A. et al. Ultrafast magnetization switching in nanoscale magnetic dots. Appl. Phys. Lett. 114, 232407 (2019).
Ivanov, B. A. & Sukstanskii, A. L. Nonlinear magnetization waves in ferrites. Sov. Phys. JETP 57, 214 (1983).
Chiolero, A. & Loss, D. Macroscopic quantum coherence in ferrimagnets. Phys. Rev. B 56, 738 (1997).
Kimel, A. V. et al. Inertia-driven spin switching in antiferromagnets. Nat. Phys. 5, 727–731 (2009).
Binder, M. et al. Magnetization dynamics of the ferrimagnet CoGd near the compensation of magnetization and angular momentum. Phys. Rev. B 74, 134404 (2006).
Okuno, T. et al. Temperature dependence of magnetic resonance in ferrimagnetic GdFeCo alloys. Appl. Phys. Express 12, 093001 (2019).
Kim, C. et al. Spin wave excitation with distinct handedness across compensation temperatures of ferrimagnets. Nat. Mater. 19, 980–985 (2020).
Schryer, N. & Walker, L. The motion of 180° domain walls in uniform dc magnetic fields. J. Appl. Phys. 45, 5406–5421 (1974).
Beach, G., Nistor, C., Knutson, C., Tsoi, M. & Erskine, J. Dynamics of field-driven domain-wall propagation in ferromagnetic nanowires. Nat. Mater. 4, 741–744 (2005).
Mougin, A., Cormier, M., Adam, J. P., Metaxas, P. J. & Ferré, J. Domain wall mobility, stability and Walker breakdown in magnetic nanowires. Europhys. Lett. 78, 57007 (2007).
Bar’yakhtar, V. G., Ivanov, B. A. & Chetkin, M. V. Dynamics of domain walls in weak ferromagnets. Sov. Phys. Usp. 28, 563–588 (1985).
Tveten, E. G., Qaiumzadeh, A., Tretiakov, O. A. & Brataas, A. Staggered dynamics in antiferromagnets by collective coordinates. Phys. Rev. Lett. 110, 127208 (2013).
Hals, K. M. D., Tserkovnyak, Y. & Brataas, A. Phenomenology of current-induced dynamics in antiferromagnets. Phys. Rev. Lett. 106, 107206 (2011).
Rößler, U. K., Bogdanov, A. N. & Pfleiderer, C. Spontaneous skyrmion ground states in magnetic metals. Nature 442, 797–801 (2006).
Mühlbauer, S. et al. Skyrmion lattice in a chiral magnet. Science 323, 915–919 (2009).
Yu, X. Z. et al. Real-space observation of a two-dimensional skyrmion crystal. Nature 465, 901–904 (2010).
Dzialoshinskii, I. E. Thermodynamic theory of weak ferromagnetism in antiferromagnetic substances. Sov. Phys. JETP 5, 1259–1272 (1957).
Moriya, T. Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91–98 (1960).
Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).
Jiang, W. et al. Blowing magnetic skyrmion bubbles. Science 349, 283–286 (2015).
Woo, S. et al. Observation of room-temperature magnetic skyrmions and their current-driven dynamics in ultrathin metallic ferromagnets. Nat. Mater. 15, 501–506 (2016).
Moreau-Luchaire, C. et al. Additive interfacial chiral interaction in multilayers for stabilization of small individual skyrmions at room temperature. Nat. Nanotechnol. 11, 444–448 (2016).
Boulle, O. et al. Room-temperature chiral magnetic skyrmions in ultrathin magnetic nanostructures. Nat. Nanotechnol. 11, 449–454 (2016).
Büttner, F. et al. Field-free deterministic ultrafast creation of magnetic skyrmions by spin–orbit torques. Nat. Nanotechnol. 12, 1040–1044 (2017).
Pollard, S. D. et al. Observation of stable Néel skyrmions in cobalt/palladium multilayers with Lorentz transmission electron microscopy. Nat. Commun. 8, 14761 (2017).
Büttner, F., Lemesh, I. & Beach, G. S. D. Theory of isolated magnetic skyrmions: from fundamentals to room temperature applications. Sci. Rep. 8, 4464 (2018).
Jiang, W. et al. Direct observation of the skyrmion Hall effect. Nat. Phys. 13, 162–169 (2016).
Litzius, K. et al. Skyrmion Hall effect revealed by direct time-resolved X-ray microscopy. Nat. Phys. 13, 170–175 (2016).
Barker, J. & Tretiakov, O. Static and dynamical properties of antiferromagnetic skyrmions in the presence of applied current and temperature. Phys. Rev. Lett. 116, 147203 (2016).
Zhang, X., Zhou, Y. & Ezawa, M. Magnetic bilayer-skyrmions without skyrmion Hall effect. Nat. Commun. 7, 10293 (2016).
Woo, S. et al. Current-driven dynamics and inhibition of the skyrmion Hall effect of ferrimagnetic skyrmions in GdFeCo films. Nat. Commun. 9, 959 (2018).
Kaiser, C., Panchula, A. F. & Parkin, S. S. P. Finite tunneling spin polarization at the compensation point of rare-earth-metal–transition-metal alloys. Phys. Rev. Lett. 95, 047202 (2005).
Núñez, A. S., Duine, R. A., Haney, P. & MacDonald, A. H. Theory of spin torques and giant magnetoresistance in antiferromagnetic metals. Phys. Rev. B 73, 214426 (2006).
Haney, P. M. & MacDonald, A. H. Current-induced torques due to compensated antiferromagnets. Phys. Rev. Lett. 100, 196801 (2008).
Xu, Y., Wang, S. & Xia, K. Spin-transfer torques in antiferromagnetic metals from first principles. Phys. Rev. Lett. 100, 226602 (2008).
Mishra, R. et al. Anomalous current-induced spin torques in ferrimagnets near compensation. Phys. Rev. Lett. 118, 167201 (2017).
Finley, J. & Liu, L. Spin–orbit-torque efficiency in compensated ferrimagnetic cobalt-terbium alloys. Phys. Rev. Appl. 6, 054001 (2016).
Roschewsky, N., Lambert, C.-H. & Salahuddin, S. Spin–orbit torque switching of ultralarge-thickness ferrimagnetic GdFeCo. Phys. Rev. B 96, 064406 (2017).
Ueda, K., Mann, M., de Brouwer, P. W. P., Bono, D. & Beach, G. S. D. Temperature dependence of spin–orbit torques across the magnetic compensation point in a ferrimagnetic TbCo alloy film. Phys. Rev. B 96, 064410 (2017).
Pham, T. H. et al. Thermal contribution to the spin–orbit torque in metallic-ferrimagnetic systems. Phys. Rev. Appl. 9, 064032 (2018).
Hebler, B., Hassdenteufel, A., Reinhardt, P., Karl, H. & Albrecht, M. Ferrimagnetic Tb–Fe alloy thin films: composition and thickness dependence of magnetic properties and all-optical switching. Front. Mater. 3, 8 (2016).
Je, S.-G. et al. Spin–orbit torque-induced switching in ferrimagnetic alloys: experiments and modeling. Appl. Phys. Lett. 112, 062401 (2018).
Tatara, G., Kohno, H. & Shibata, J. Microscopic approach to current-driven domain wall dynamics. Phys. Rep. 468, 213–301 (2008).
Lee, K.-J. et al. Self-consistent calculation of spin transport and magnetization dynamics. Phys. Rep. 531, 89–113 (2013).
Xiao, J., Zangwill, A. & Stiles, M. D. Spin-transfer torque for continuously variable magnetization. Phys. Rev. B 73, 054428 (2006).
Park, H.-J. et al. Numerical computation of spin-transfer torques for antiferromagnetic domain walls. Phys. Rev. B 101, 144431 (2020).
Kim, J. H. et al. Spin–orbit torques associated with ferrimagnetic order in Pt/GdFeCo/MgO layers. Sci. Rep. 8, 6017 (2018).
Haltz, E. et al. Deviations from bulk behavior in TbFe(Co) thin films: interfaces contribution in the biased composition. Phys. Rev. Mater. 2, 104410 (2018).
Kim, D.-H. et al. Bulk Dzyaloshinskii–Moriya interaction in amorphous ferrimagnetic alloys. Nat. Mater. 18, 685–690 (2019).
Krishnia, S. et al. Making spin-orbit coupling visible in single layer ferrimagnets: direct observation of spin–orbit torques and chiral spin textures. Phys. Rev. Appl. 16, 024040 (2021).
Caretta, L. et al. Relativistic kinematics of a magnetic soliton. Science 370, 1438–1442 (2020).
Gomonay, O., Jungwirth, T. & Sinova, J. High antiferromagnetic domain wall velocity induced by Néel spin–orbit torques. Phys. Rev. Lett. 117, 017202 (2016).
Shiino, T. et al. Antiferromagnetic domain wall motion by spin–orbit torques. Phys. Rev. Lett. 117, 087203 (2016).
Taniguchi, T., Grollier, J. & Stiles, M. D. Spin-transfer torques generated by the anomalous Hall effect and anisotropic magnetoresistance. Phys. Rev. Appl. 3, 044001 (2015).
Amin, V. P., Li, J., Stiles, M. D. & Haney, P. M. Intrinsic spin currents in ferromagnets. Phys. Rev. B 99, 220405(R) (2019).
Kim, K.-W. & Lee, K.-J. Generalized spin drift-diffusion formalism in the presence of spin–orbit interaction of ferromagnets. Phys. Rev. Lett. 125, 207205 (2020).
Baek, S.-H. C. et al. Spin currents and spin–orbit torques in ferromagnetic trilayers. Nat. Mater. 17, 509–513 (2018).
Iihama, S. et al. Spin-transfer torque induced by the spin anomalous Hall effect. Nat. Electron. 1, 120–123 (2018).
Wang, W. et al. Anomalous spin–orbit torques in magnetic single-layer films. Nat. Nanotechnol. 14, 819–824 (2019).
Céspedes‐Berrocal, D. et al. Current‐induced spin torques on single GdFeCo magnetic layers. Adv. Mater. 33, 2007047 (2021).
Kryglyak, V. V., Demokritov, S. O. & Grundler, D. Magnonics. J. Phys. D 43, 264001 (2010).
Lenk, B., Ulrichs, H., Garbs, F. & Münzenberg, M. The building blocks of magnonics. Phys. Rep. 507, 107–136 (2011).
Chumak, A. V., Vasyuchka, V. I., Serga, A. A. & Hillebrands, B. Magnon spintronics. Nat. Phys. 11, 453–461 (2015).
Liensberger, L. et al. Exchange-enhanced ultrastrong magnon–magnon coupling in a compensated ferrimagnet. Phys. Rev. Lett. 123, 117204 (2019).
Nambu, Y. et al. Observation of magnon polarization. Phys. Rev. Lett. 125, 027201 (2020).
Bauer, G. E. W., Saitoh, E. & van Wees, B. J. Spin caloritronics. Nat. Mater. 11, 391–399 (2012).
Uchida, K. et al. Observation of the spin-Seebeck effect. Nature 455, 778–781 (2008).
Uchida, K. et al. Observation of longitudinal spin-Seebeck effect in magnetic insulators. Appl. Phys. Lett. 97, 172505 (2010).
Geprägs, S. et al. Origin of the spin Seebeck effect in compensated ferrimagnets. Nat. Commun. 7, 10452 (2016).
Bauer, J. J. et al. Dysprosium iron garnet thin films with perpendicular magnetic anisotropy on silicon. Adv. Electron. Mater. 6, 1900820 (2020).
Hu, C.-M. Dawn of cavity spintronics. Phys. Can. 72, 76 (2016).
Shim, J.-C., Kim, S.-J., Kim, S. K. & Lee, K.-J. Enhanced magnon–photon coupling at the angular momentum compensation point of ferrimagnets. Phys. Rev. Lett. 125, 027205 (2020).
Huang, M. et al. Voltage control of ferrimagnetic order and voltage-assisted writing of ferrimagnetic spin textures. Nat. Nanotechnol. 16, 981–988 (2021).
Swaving, A. C. & Duine, R. A. Current-induced torques in continuous antiferromagnetic textures. Phys. Rev. B 83, 054428 (2011).
Acknowledgements
K.-J.L. acknowledges support from the Samsung Research Funding Center of Samsung Electronics under project no. SRFCMA1702-02. T.R. acknowledges support from the Nederlandse Organisatie voor Wetenschappelijk Onderzoek (NWO) through the programme Exciting Exchange, the European Union Horizon 2020 and the innovation programme under the FET-Open grand agreement no. 713481 (SPICE), and the European Research Council ERC grant agreement no. 856538 (3D MAGiC). H.Y. is supported by SpOT-LITE programme (A*STAR grant, A18A6b0057) through RIE2020 funds, Samsung Electronics’ University R&D programme (Exotic SOT materials/SOT characterization) and a National Research Foundation (NRF) Singapore Investigatorship (NRFI06-2020-0015). G.S.D.B. acknowledges support through the DARPA ‘Topological Excitations in Electronics (TEE)’ programme. S.K.K. is supported by Brain Pool Plus Program through the National Research Foundation of Korea funded by the Ministry of Science and ICT (NRF-2020H1D3A2A03099291) and the National Research Foundation of Korea funded by the Korea Government via the SRC Center for Quantum Coherence in Condensed Matter (NRF-2016R1A5A1008184).
Author information
Authors and Affiliations
Contributions
The manuscript was written through contributions from all authors.
Corresponding author
Ethics declarations
Competing interests
The authors declare no competing interests.
Additional information
Peer review information Nature Materials thanks Uwe Bovensiepen and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Rights and permissions
About this article
Cite this article
Kim, S.K., Beach, G.S.D., Lee, KJ. et al. Ferrimagnetic spintronics. Nat. Mater. 21, 24–34 (2022). https://doi.org/10.1038/s41563-021-01139-4
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01139-4
This article is cited by
-
Magnetization reversal through an antiferromagnetic state
Nature Communications (2023)
-
Direct observation of Néel-type skyrmions and domain walls in a ferrimagnetic DyCo3 thin film
Communications Physics (2023)
-
Handedness anomaly in a non-collinear antiferromagnet under spin–orbit torque
Nature Materials (2023)
-
Intrinsic spin Hall resonance in Bi-based Janus monolayers
Nano Research (2023)
-
DFT study of the spin glass and ferrimagnetism in quadruple perovskites CaCu3B2Ir2O12 (B = Mn, Fe, Co, and Ni) for spintronic applications
Applied Physics A (2023)