Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Topological spintronics and magnetoelectronics

Abstract

Topological electronic materials, such as topological insulators, are distinct from trivial materials in the topology of their electronic band structures that lead to robust, unconventional topological states, which could bring revolutionary developments in electronics. This Perspective summarizes developments of topological insulators in various electronic applications including spintronics and magnetoelectronics. We group and analyse several important phenomena in spintronics using topological insulators, including spin–orbit torque, the magnetic proximity effect, interplay between antiferromagnetism and topology, and the formation of topological spin textures. We also outline recent developments in magnetoelectronics such as the axion insulator and the topological magnetoelectric effect observed using different topological insulators.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Fig. 1: Current-induced spin accumulation in TIs.
Fig. 2: Evolution between axion insulators and QAH insulators.
Fig. 3: The topological magnetoelectric effect of Dirac fermions.

References

  1. Qi, X.-L. & Zhang, S.-C. Topological insulators and superconductors. Rev. Mod. Phys. 83, 1057–1110 (2011).

    CAS  Google Scholar 

  2. Fu, L. & Kane, C. L. Topological insulators with inversion symmetry. Phys. Rev. B 76, 045302 (2007).

    Google Scholar 

  3. Qi, X.-L., Hughes, T. L. & Zhang, S.-C. Topological field theory of time-reversal invariant insulators. Phys. Rev. B 78, 195424 (2008).

    Google Scholar 

  4. Yu, R. et al. Quantized anomalous Hall effect in magnetic topological insulators. Science 329, 61–64 (2010).

    CAS  Google Scholar 

  5. Haldane, F. D. Model for a quantum Hall effect without Landau levels: condensed-matter realization of the “parity anomaly”. Phys. Rev. Lett. 61, 2015–2018 (1988).

    CAS  Google Scholar 

  6. Chang, C. Z. et al. Experimental observation of the quantum anomalous Hall effect in a magnetic topological insulator. Science 340, 167–170 (2013).

    CAS  Google Scholar 

  7. Checkelsky, J. G. et al. Trajectory of the anomalous Hall effect towards the quantized state in a ferromagnetic topological insulator. Nat. Phys. 10, 731–736 (2014).

    CAS  Google Scholar 

  8. Kou, X. et al. Scale-invariant quantum anomalous Hall effect in magnetic topological insulators beyond the two-dimensional limit. Phys. Rev. Lett. 113, 137201 (2014).

    Google Scholar 

  9. Fox, E. J. et al. Part-per-million quantization and current-induced breakdown of the quantum anomalous Hall effect. Phys. Rev. B 98, 075145 (2018).

    CAS  Google Scholar 

  10. Tokura, Y., Yasuda, K. & Tsukazaki, A. Magnetic topological insulators. Nat. Rev. Phys. 1, 126–143 (2019).

    Google Scholar 

  11. Nagaosa, N. & Tokura, Y. Topological properties and dynamics of magnetic skyrmions. Nat. Nanotechnol. 8, 899–911 (2013).

    CAS  Google Scholar 

  12. Liu, L. et al. Spin-torque switching with the giant spin Hall effect of tantalum. Science 336, 555–558 (2012).

    CAS  Google Scholar 

  13. Pai, C.-F. et al. Spin transfer torque devices utilizing the giant spin Hall effect of tungsten. Appl. Phys. Lett. 101, 122404 (2012).

    Google Scholar 

  14. Pai, C.-F., Ou, Y., Vilela-Leão, L. H., Ralph, D. C. & Buhrman, R. A. Dependence of the efficiency of spin Hall torque on the transparency of Pt/ferromagnetic layer interfaces. Phys. Rev. B 92, 064426 (2015).

    Google Scholar 

  15. Mellnik, A. R. et al. Spin-transfer torque generated by a topological insulator. Nature 511, 449–451 (2014).

    CAS  Google Scholar 

  16. Kondou, K. et al. Fermi-level-dependent charge-to-spin current conversion by Dirac surface states of topological insulators. Nat. Phys. 12, 1027–1031 (2016).

    CAS  Google Scholar 

  17. Li, C. H. et al. Electrical detection of charge-current-induced spin polarization due to spin-momentum locking in Bi2Se3. Nat. Nanotechnol. 9, 218–224 (2014).

    CAS  Google Scholar 

  18. Fan, Y. et al. Electric-field control of spin–orbit torque in a magnetically doped topological insulator. Nat. Nanotechnol. 11, 352–359 (2016).

    CAS  Google Scholar 

  19. Wu, H. et al. Room-temperature spin–orbit torque from topological surface states. Phys. Rev. Lett. 123, 207205 (2019).

    CAS  Google Scholar 

  20. Fan, Y. et al. Magnetization switching through giant spin–orbit torque in a magnetically doped topological insulator heterostructure. Nat. Mater. 13, 699–704 (2014).

    CAS  Google Scholar 

  21. Yasuda, K. et al. Large unidirectional magnetoresistance in a magnetic topological insulator. Phys. Rev. Lett. 117, 127202 (2016).

    CAS  Google Scholar 

  22. Che, X. et al. Strongly surface state carrier-dependent spin–orbit torque in magnetic topological insulators. Adv. Mater. 32, 1907661 (2020).

    CAS  Google Scholar 

  23. Wang, Y. et al. Room temperature magnetization switching in topological insulator–ferromagnet heterostructures by spin–orbit torques. Nat. Commun. 8, 1364 (2017).

    CAS  Google Scholar 

  24. Sanchez, J. C. et al. Spin-to-charge conversion using Rashba coupling at the interface between non-magnetic materials. Nat. Commun. 4, 2944 (2013).

    Google Scholar 

  25. DC, M. et al. Room-temperature high spin–orbit torque due to quantum confinement in sputtered BixSe(1−x) films. Nat. Mater. 17, 800–807 (2018).

    CAS  Google Scholar 

  26. Wang, Y. et al. Topological surface states originated spin–orbit torques in Bi2Se3. Phys. Rev. Lett. 114, 257202 (2015).

    Google Scholar 

  27. Khang, N. H. D., Ueda, Y. & Hai, P. N. A conductive topological insulator with large spin Hall effect for ultralow power spin–orbit torque switching. Nat. Mater. 17, 808–813 (2018).

    CAS  Google Scholar 

  28. Du, L. et al. Tuning edge states in strained-layer InAs/GaInSb quantum spin Hall insulators. Phys. Rev. Lett. 119, 056803 (2017).

    Google Scholar 

  29. Wu, H. et al. Spin–orbit torque switching of a nearly compensated ferrimagnet by topological surface states. Adv. Mater. 31, 1901681 (2019).

    Google Scholar 

  30. Li, P. et al. Magnetization switching using topological surface states. Sci. Adv. 5, eaaw3415 (2019).

    CAS  Google Scholar 

  31. Šmejkal, L., Mokrousov, Y., Yan, B. & MacDonald, A. H. Topological antiferromagnetic spintronics. Nat. Phys. 14, 242–251 (2018).

    Google Scholar 

  32. He, Q. L. et al. Tailoring exchange couplings in magnetic topological-insulator/antiferromagnet heterostructures. Nat. Mater. 16, 94–100 (2017).

    CAS  Google Scholar 

  33. Gomonay, O., Jungwirth, T. & Sinova, J. Concepts of antiferromagnetic spintronics. Phys. Status Solidi Rapid Res. Lett. 11, 1700022 (2017).

    Google Scholar 

  34. Šmejkal, L., Jungwirth, T. & Sinova, J. Route towards Dirac and Weyl antiferromagnetic spintronics. Phys. Status Solidi Rapid Res. Lett. 11, 1700044 (2017).

    Google Scholar 

  35. He, Q. L. et al. Topological transitions induced by antiferromagnetism in a thin-film topological insulator. Phys. Rev. Lett. 121, 096802 (2018).

    CAS  Google Scholar 

  36. Matetskiy, A. V. et al. Direct observation of a gap opening in topological interface states of MnSe/Bi2Se3 heterostructure. Appl. Phys. Lett. 107, 091604 (2015).

    Google Scholar 

  37. Eremeev, S. V., Otrokov, M. M. & Chulkov, E. V. New universal type of interface in the magnetic insulator/topological insulator heterostructures. Nano Lett. 18, 6521–6529 (2018).

    CAS  Google Scholar 

  38. Luo, W. & Qi, X.-L. Massive Dirac surface states in topological insulator/magnetic insulator heterostructures. Phys. Rev. B 87, 085431 (2013).

    Google Scholar 

  39. He, Q. L. et al. Exchange-biasing topological charges by antiferromagnetism. Nat. Commun. 9, 2767 (2018).

    Google Scholar 

  40. He, Q. L. et al. Two-dimensional superconductivity at the interface of a Bi2Te3/FeTe heterostructure. Nat. Commun. 5, 4247 (2014).

    CAS  Google Scholar 

  41. Hagmann, J. A. et al. Molecular beam epitaxy growth and structure of self-assembled Bi2Se3/Bi2MnSe4 multilayer heterostructures. New J. Phys. 19, 085002 (2017).

    Google Scholar 

  42. Hou, Y., Kim, J. & Wu, R. Magnetizing topological surface states of Bi2Se3 with a CrI3 monolayer. Sci. Adv. 5, eaaw1874 (2019).

    CAS  Google Scholar 

  43. Wang, F. et al. Observation of interfacial antiferromagnetic coupling between magnetic topological insulator and antiferromagnetic insulator. Nano Lett. 19, 2945–2952 (2019).

    CAS  Google Scholar 

  44. Otrokov, M. M. et al. Prediction and observation of an antiferromagnetic topological insulator. Nature 576, 416–422 (2019).

    CAS  Google Scholar 

  45. Mong, R. K. S., Essin, A. M. & Moore, J. E. Antiferromagnetic topological insulators. Phys. Rev. B 81, 245209 (2010).

    Google Scholar 

  46. Li, J. et al. Intrinsic magnetic topological insulators in van der Waals layered MnBi2Te4-family materials. Sci. Adv. 5, eaaw5685 (2019).

    CAS  Google Scholar 

  47. Zhang, D. et al. Topological axion states in the magnetic insulator MnBi2Te4 with the quantized magnetoelectric effect. Phys. Rev. Lett. 122, 206401 (2019).

    CAS  Google Scholar 

  48. Otrokov, M. M. et al. Unique thickness-dependent properties of the van der Waals interlayer antiferromagnet MnBi2Te4 films. Phys. Rev. Lett. 122, 107202 (2019).

    CAS  Google Scholar 

  49. Gong, Y. et al. Experimental realization of an intrinsic magnetic topological insulator. Chin. Phys. Lett. 36, 076801 (2019).

    CAS  Google Scholar 

  50. Lee, S. H. et al. Spin scattering and noncollinear spin structure-induced intrinsic anomalous Hall effect in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. Res. 1, 012011 (2019).

    CAS  Google Scholar 

  51. Chen, B. et al. Intrinsic magnetic topological insulator phases in the Sb doped MnBi2Te4 bulks and thin flakes. Nat. Commun. 10, 4469 (2019).

    Google Scholar 

  52. Yan, J. Q. et al. Crystal growth and magnetic structure of MnBi2Te4. Phys. Rev. Mater. 3, 064202 (2019).

    CAS  Google Scholar 

  53. Cui, J. et al. Transport properties of thin flakes of the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 99, 155125 (2019).

    CAS  Google Scholar 

  54. Vidal, R. C. et al. Surface states and Rashba-type spin polarization in antiferromagnetic MnBi2Te4(0001). Phys. Rev. B 100, 121104 (2019).

    CAS  Google Scholar 

  55. Hao, Y.-J. et al. Gapless surface Dirac cone in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041038 (2019).

    CAS  Google Scholar 

  56. Chen, Y. J. et al. Topological electronic structure and its temperature evolution in antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. X 9, 041040 (2019).

    CAS  Google Scholar 

  57. Swatek, P. et al. Gapless Dirac surface states in the antiferromagnetic topological insulator MnBi2Te4. Phys. Rev. B 101, 161109 (2020).

    CAS  Google Scholar 

  58. Liu, C. et al. Robust axion insulator and Chern insulator phases in a two-dimensional antiferromagnetic topological insulator. Nat. Mater. 19, 522–527 (2020).

    CAS  Google Scholar 

  59. Mogi, M. et al. Tailoring tricolor structure of magnetic topological insulator for robust axion insulator. Sci. Adv. 3, eaao1669 (2017).

    Google Scholar 

  60. Xiao, D. et al. Realization of the axion insulator state in quantum anomalous Hall sandwich heterostructures. Phys. Rev. Lett. 120, 056801 (2018).

    CAS  Google Scholar 

  61. Mogi, M. et al. A magnetic heterostructure of topological insulators as a candidate for an axion insulator. Nat. Mater. 16, 516–521 (2017).

    CAS  Google Scholar 

  62. Deng, Y. et al. Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi2Te4. Science 367, 895–900 (2020).

    CAS  Google Scholar 

  63. Hu, C. et al. A van der Waals antiferromagnetic topological insulator with weak interlayer magnetic coupling. Nat. Commun. 11, 97 (2020).

    CAS  Google Scholar 

  64. Wu, J. et al. Natural van der Waals heterostructural single crystals with both magnetic and topological properties. Sci. Adv. 5, eaax9989 (2019).

    CAS  Google Scholar 

  65. Tian, S. J. et al. Magnetic topological insulator MnBi6Te10 with a zero-field ferromagnetic state and gapped Dirac surface states. Phys. Rev. B 102, 035144 (2020).

    CAS  Google Scholar 

  66. Tang, P., Zhou, Q., Xu, G. & Zhang, S.-C. Dirac fermions in an antiferromagnetic semimetal. Nat. Phys. 12, 1100–1104 (2016).

    CAS  Google Scholar 

  67. Wan, X., Turner, A. M., Vishwanath, A. & Savrasov, S. Y. Topological semimetal and Fermi-arc surface states in the electronic structure of pyrochlore iridates. Phys. Rev. B 83, 205101 (2011).

    Google Scholar 

  68. Sushkov, A. B. et al. Optical evidence for a Weyl semimetal state in pyrochlore Eu2Ir2O7. Phys. Rev. B 92, 241108 (2015).

    Google Scholar 

  69. Yang, H. et al. Topological Weyl semimetals in the chiral antiferromagnetic materials Mn3Ge and Mn3Sn. New J. Phys. 19, 015008 (2017).

    Google Scholar 

  70. Kuroda, K. et al. Evidence for magnetic Weyl fermions in a correlated metal. Nat. Mater. 16, 1090–1095 (2017).

    CAS  Google Scholar 

  71. Wang, K., Graf, D., Lei, H., Tozer, S. W. & Petrovic, C. Quantum transport of two-dimensional Dirac fermions in SrMnBi2. Phys. Rev. B 84, 220401 (2011).

    Google Scholar 

  72. Guo, Y. F. et al. Coupling of magnetic order to planar Bi electrons in the anisotropic Dirac metals AMnBi2 (A = Sr,Ca). Phys. Rev. B 90, 075120 (2014).

    CAS  Google Scholar 

  73. Masuda, H. et al. Quantum Hall effect in a bulk antiferromagnet EuMnBi2 with magnetically confined two-dimensional Dirac fermions. Sci. Adv. 2, e1501117 (2016).

    Google Scholar 

  74. Wadley, P. et al. Electrical switching of an antiferromagnet. Science 351, 587–590 (2016).

    CAS  Google Scholar 

  75. Chen, X. et al. Electric field control of Néel spin–orbit torque in an antiferromagnet. Nat. Mater. 18, 931–935 (2019).

    CAS  Google Scholar 

  76. Pan, L. et al. Observation of quantum anomalous Hall effect and exchange interaction in topological insulator/antiferromagnet heterostructure. Adv. Mater. 32, e2001460 (2020).

    Google Scholar 

  77. Essin, A. M., Moore, J. E. & Vanderbilt, D. Magnetoelectric polarizability and axion electrodynamics in crystalline insulators. Phys. Rev. Lett. 102, 146805 (2009).

    Google Scholar 

  78. Fiebig, M. Revival of the magnetoelectric effect. J. Phys. D 38, R123–R152 (2005).

    CAS  Google Scholar 

  79. O’Dell, T. H. The electrodynamics of magneto-electric media. Philos. Mag. 7, 1653–1669 (1962).

    Google Scholar 

  80. Dzyaloshinskii, I. E. On the magneto-electrical effect in antiferromagnets. Sov. Phys. JETP 10, 628–629 (1960).

    Google Scholar 

  81. Hughes, T. L., Prodan, E. & Bernevig, B. A. Inversion-symmetric topological insulators. Phys. Rev. B 83, 245132 (2011).

    Google Scholar 

  82. Turner, A. M., Zhang, Y., Mong, R. S. K. & Vishwanath, A. Quantized response and topology of magnetic insulators with inversion symmetry. Phys. Rev. B 85, 165120 (2012).

    Google Scholar 

  83. Armitage, N. P. & Wu, L. On the matter of topological insulators as magnetoelectrics. SciPost Phys. 6, 046 (2019).

    CAS  Google Scholar 

  84. Peccei, R. D. & Quinn, H. R. CP conservation in the presence of pseudoparticles. Phys. Rev. Lett. 38, 1440–1443 (1977).

    CAS  Google Scholar 

  85. Wilczek, F. Problem of strong P and T invariance in the presence of instantons. Phys. Rev. Lett. 40, 279–282 (1978).

    CAS  Google Scholar 

  86. Weinberg, S. A new light boson? Phys. Rev. Lett. 40, 223–226 (1978).

    CAS  Google Scholar 

  87. Wilczek, F. Two applications of axion electrodynamics. Phys. Rev. Lett. 58, 1799–1802 (1987).

    CAS  Google Scholar 

  88. Nenno, D. M., Garcia, C. A. C., Gooth, J., Felser, C. & Narang, P. Axion physics in condensed-matter systems. Nat. Rev. Phys. 2, 682–696 (2020).

    Google Scholar 

  89. Zirnstein, H. G. & Rosenow, B. Topological magnetoelectric effect: nonlinear time‐reversal‐symmetric response, Witten effect, and half‐integer quantum Hall effect. Phys. Status Solidi B 257, 1900698 (2020).

    CAS  Google Scholar 

  90. Morimoto, T., Furusaki, A. & Nagaosa, N. Topological magnetoelectric effects in thin films of topological insulators. Phys. Rev. B 92, 085113 (2015).

    Google Scholar 

  91. Wang, J., Lian, B., Qi, X. L. & Zhang, S. C. Quantized topological magnetoelectric effect of the zero-plateau quantum anomalous Hall state. Phys. Rev. B 92, 081107 (2015).

    Google Scholar 

  92. Wang, J., Lian, B. & Zhang, S.-C. Dynamical axion field in a magnetic topological insulator superlattice. Phys. Rev. B 93, 045115 (2016).

    Google Scholar 

  93. Allen, M. et al. Visualization of an axion insulating state at the transition between 2 chiral quantum anomalous Hall states. Proc. Natl Acad. Sci. USA 116, 14511–14515 (2019).

    CAS  Google Scholar 

  94. Chen, R. et al. Using nonlocal surface transport to identify the axion insulator. Phys. Rev. B 103, L241409 (2021).

    CAS  Google Scholar 

  95. Gu, M. et al. Spectral signatures of the surface anomalous Hall effect in magnetic axion insulators. Nat. Commun. 12, 3524 (2021).

    CAS  Google Scholar 

  96. Kurumaji, T. et al. Optical magnetoelectric resonance in a polar magnet (Fe,Zn)2Mo3O8 with axion-type coupling. Phys. Rev. Lett. 119, 077206 (2017).

    CAS  Google Scholar 

  97. Beenakker, C. Topological magnetoelectric effect versus quantum Faraday effect. J. Club Condens. Matter Phys. https://doi.org/10.36471/JCCM_April_2016_01 (2016).

  98. Tse, W. K. & MacDonald, A. H. Giant magneto-optical Kerr effect and universal Faraday effect in thin-film topological insulators. Phys. Rev. Lett. 105, 057401 (2010).

    Google Scholar 

  99. Tse, W.-K. & MacDonald, A. H. Magneto-optical and magnetoelectric effects of topological insulators in quantizing magnetic fields. Phys. Rev. B 82, 161104 (2010).

    Google Scholar 

  100. Maciejko, J., Qi, X. L., Drew, H. D. & Zhang, S. C. Topological quantization in units of the fine structure constant. Phys. Rev. Lett. 105, 166803 (2010).

    Google Scholar 

  101. Okada, K. N. et al. Terahertz spectroscopy on Faraday and Kerr rotations in a quantum anomalous Hall state. Nat. Commun. 7, 12245 (2016).

    CAS  Google Scholar 

  102. Wu, L. et al. Quantized Faraday and Kerr rotation and axion electrodynamics of a 3D topological insulator. Science 354, 1124–1127 (2016).

    CAS  Google Scholar 

  103. Dziom, V. et al. Observation of the universal magnetoelectric effect in a 3D topological insulator. Nat. Commun. 8, 15197 (2017).

    CAS  Google Scholar 

  104. Koirala, N. et al. Record surface state mobility and quantum Hall effect in topological insulator thin films via interface engineering. Nano Lett. 15, 8245–8249 (2015).

    CAS  Google Scholar 

  105. Mondal, M. et al. Electric field modulated topological magnetoelectric effect in Bi2Se3. Phys. Rev. B 98, 121106 (2018).

    CAS  Google Scholar 

  106. Upadhyaya, P. & Tserkovnyak, Y. Domain wall in a quantum anomalous Hall insulator as a magnetoelectric piston. Phys. Rev. B 94, 020411 (2016).

    Google Scholar 

  107. Yasuda, K. et al. Quantized chiral edge conduction on domain walls of a magnetic topological insulator. Science 358, 1311–1314 (2017).

    CAS  Google Scholar 

  108. Rosen, I. T. et al. Chiral transport along magnetic domain walls in the quantum anomalous Hall effect. npj Quantum Mater. 2, 69 (2017).

    Google Scholar 

  109. Mahoney, A. C. et al. Zero-field edge plasmons in a magnetic topological insulator. Nat. Commun. 8, 1836 (2017).

    Google Scholar 

  110. Kurebayashi, D. & Nomura, K. Theory for spin torque in Weyl semimetal with magnetic texture. Sci. Rep. 9, 5365 (2019).

    Google Scholar 

  111. Araki, Y. & Nomura, K. Charge pumping induced by magnetic texture dynamics in Weyl semimetals. Phys. Rev. Appl. 10, 014007 (2018).

    CAS  Google Scholar 

  112. Crosse, J. A. Theory of topological insulator waveguides: polarization control and the enhancement of the magneto-electric effect. Sci. Rep. 7, 43115 (2017).

    CAS  Google Scholar 

  113. Semenov, Y. G., Duan, X. & Kim, K. W. Electrically controlled magnetization in ferromagnet-topological insulator heterostructures. Phys. Rev. B 86, 161406 (2012).

    Google Scholar 

  114. Amiri, P. K. & Wang, K. L. Voltage-controlled magnetic anisotropy in spintronic devices. Spin 2, 1240002 (2013).

    Google Scholar 

  115. Vaz, C. A. Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter 24, 333201 (2012).

    CAS  Google Scholar 

  116. Fert, A., Reyren, N. & Cros, V. Magnetic skyrmions: advances in physics and potential applications. Nat. Rev. Mater. 2, 17031 (2017).

    CAS  Google Scholar 

  117. Yasuda, K. et al. Geometric Hall effects in topological insulator heterostructures. Nat. Phys. 12, 555–559 (2016).

    CAS  Google Scholar 

  118. Liu, C. et al. Dimensional crossover-induced topological Hall effect in a magnetic topological insulator. Phys. Rev. Lett. 119, 176809 (2017).

    Google Scholar 

  119. Hamamoto, K., Ezawa, M. & Nagaosa, N. Quantized topological Hall effect in skyrmion crystal. Phys. Rev. B 92, 115417 (2015).

    Google Scholar 

Download references

Acknowledgements

Q.L.H. acknowledges support from the National Key R&D Program of China (grant no. 2020YFA0308900 and no. 2018YFA0305601), the National Natural Science Foundation of China (grant no. 11874070) and the Strategic Priority Research Program of the Chinese Academy of Sciences (grant no. XDB28000000). Y.T. acknowledges support from JST CREST (no. JPMJCR16F1). K.L.W. acknowledges the support of the US National Science Foundation (ECCS 1611570), the ARO Multidisciplinary University Research Initiative (MURI) program under W911NF-16-1-047, the Energy Frontier Research Center funded by the US Department of Energy (DOE), Basic Energy Sciences (BES), under award no. DE-SC0012670, and the Raytheon Endowed Chair. T.L.H., N.P.A. and K.L.W. acknowledge support from the ARO MURI on ‘Axion Electrodynamics beyond Maxwell’s Equations’.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Qing Lin He or Kang L. Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Prineha Narang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, Q.L., Hughes, T.L., Armitage, N.P. et al. Topological spintronics and magnetoelectronics. Nat. Mater. 21, 15–23 (2022). https://doi.org/10.1038/s41563-021-01138-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01138-5

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing