Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes

Abstract

Zwitterionic materials can exhibit unique characteristics and are highly tunable by variation to the covalently bound cationic and anionic moieties. Despite the breadth of properties and potential uses reported to date, for electrolyte applications they have thus far primarily been used as additives or for making polymer gels. However, zwitterions offer intriguing promise as electrolyte matrix materials that are non-volatile and charged but non-migrating. Here we report a family of zwitterions that exhibit molecular disorder and plasticity, which allows their use as a solid-state conductive matrix. We have characterized the thermal, morphological and structural properties of these materials using techniques including differential scanning calorimetry, scanning electron microscopy, solid-state NMR and X-ray crystallography. We report the physical and transport properties of zwitterions combined with lithium salts and a lithium-functionalized polymer to form solid or high-salt-content liquid electrolytes. We demonstrate that the zwitterion-based electrolytes can allow high target ion transport and support stable lithium metal cell cycling. The ability to use disordered zwitterionic materials as electrolyte matrices for high target ion conduction, coupled with an extensive scope for varying the chemical and physical properties, has important implications for the future design of non-volatile materials that bridge the choice between traditional molecular and ionic solvent systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Characterization of the neat zwitterions.
Fig. 2: Thermal and transport properties of 10 mol% LiFSI in ZI(1).
Fig. 3: The performance of 10 mol% LiFSI in ZI(1) in lithium metal symmetrical and full cells.
Fig. 4: Conductivity, NMR and cell performance for the 10 mol% LiFSI in ZI(1) and its mixture with lithium-functionalized polymer NPs.
Fig. 5: Conductivity and symmetrical lithium cell performance of the liquid 50 mol% LiFSI in ZI(1) electrolyte.

Similar content being viewed by others

Data availability

The data represented in the figures in the main paper are available as data files. Source data are provided with this paper. Additional source data are available from the corresponding author upon reasonable request. The crystallographic information file for ZI(1) is available as a Supplementary Information file and has been deposited in the Cambridge Structural Database, Cambridge Crystallographic Data Centre deposition number 2103332.

References

  1. Ichikawa, T. Zwitterions as building blocks for functional liquid crystals and block copolymers. Polym. J. 49, 413–421 (2017).

    Article  CAS  Google Scholar 

  2. Das, S. et al. Zwitterionic imidazolium salt: recent advances in organocatalysis. Synthesis 48, 1269–1285 (2016).

    Article  CAS  Google Scholar 

  3. Zheng, L. et al. Progress in biodegradable zwitterionic materials. Polym. Degrad. Stab. 139, 1–19 (2017).

    Article  CAS  Google Scholar 

  4. Islam, A. et al. Zwitterions for organic/perovskite solar cells, light-emitting devices, and lithium ion batteries: recent progress and perspectives. Adv. Energy Mater. 9, 1803354 (2019).

    Article  Google Scholar 

  5. Woo, H.-S. et al. Ionic liquid-based gel polymer electrolyte containing zwitterion for lithium-oxygen batteries. Electrochim. Acta 345, 136248 (2020).

    Article  CAS  Google Scholar 

  6. Soberats, B. et al. Zwitterionic liquid crystals as 1D and 3D lithium ion transport media. J. Mater. Chem. A 3, 11232–11238 (2015).

    Article  CAS  Google Scholar 

  7. Yoshizawa, M., Hirao, M., Ito-Akita, K. & Ohno, H. Ion conduction in zwitterionic-type molten salts and their polymers. J. Mater. Chem. 11, 1057–1062 (2001).

    Article  CAS  Google Scholar 

  8. Tiyapiboonchaiya, C. et al. The zwitterion effect in high-conductivity polyelectrolyte materials. Nat. Mater. 3, 29–32 (2004).

    Article  CAS  Google Scholar 

  9. Yoshizawa, M. & Ohno, H. A new family of zwitterionic liquids arising from a phase transition of ammonium inner salts containing an ether bond. Chem. Lett. 33, 1594–1595 (2004).

    Article  CAS  Google Scholar 

  10. Ohno, H. Molten salt type polymer electrolytes. Electrochim. Acta 46, 1407–1411 (2001).

    Article  CAS  Google Scholar 

  11. Zhang, H. et al. Single lithium-ion conducting solid polymer electrolytes: advances and perspectives. Chem. Soc. Rev. 46, 797–815 (2017).

    Article  CAS  Google Scholar 

  12. Deng, K. et al. Single-ion conducting gel polymer electrolytes: design, preparation and application. J. Mater. Chem. A 8, 1557–1577 (2020).

    Article  CAS  Google Scholar 

  13. Li, G. et al. Cations and anions regulation through zwitterionic gel electrolytes for stable lithium metal anodes. Energy Stor. Mater. 24, 574–578 (2020).

    Google Scholar 

  14. Taylor, M. E. & Panzer, M. J. Fully-zwitterionic polymer-supported ionogel electrolytes featuring a hydrophobic ionic liquid. J. Phys. Chem. B 122, 8469–8476 (2018).

    Article  CAS  Google Scholar 

  15. Narita, A., Shibayama, W. & Ohno, H. Structural factors to improve physico-chemical properties of zwitterions as ion conductive matrices. J. Mater. Chem. 16, 1475–1482 (2006).

    Article  CAS  Google Scholar 

  16. Ohno, H., Yoshizawa-Fujita, M. & Kohno, Y. Design and properties of functional zwitterions derived from ionic liquids. Phys. Chem. Chem. Phys. 20, 10978–10991 (2018).

    Article  CAS  Google Scholar 

  17. Yoshizawa-Fujita, M., Tamura, T., Takeoka, Y. & Rikukawa, M. Low-melting zwitterion: effect of oxyethylene units on thermal properties and conductivity. Chem. Commun. 47, 2345–2347 (2011).

    Article  CAS  Google Scholar 

  18. Timmermans, J. Plastic crystals: a historical review. J. Phys. Chem. Solids 18, 1–8 (1961).

    Article  CAS  Google Scholar 

  19. MacFarlane, D. R., Meakin, P., Amini, N. & Forsyth, M. Structural studies of ambient temperature plastic crystal ion conductors. J. Condens. Matter Phys. 13, 8257–8267 (2001).

    Article  CAS  Google Scholar 

  20. Fan, L. Z., Hu, Y. S., Bhattacharyya, A. J. & Maier, J. Succinonitrile as a versatile additive for polymer electrolytes. Adv. Funct. Mater. 17, 2800–2807 (2007).

    Article  CAS  Google Scholar 

  21. Shekibi, Y., Ruether, T., Huang, J. & Hollenkamp, A. F. Realisation of an all solid state lithium battery using solid high temperature plastic crystal electrolytes exhibiting liquid like conductivity. Phys. Chem. Chem. Phys. 14, 4597–4604 (2012).

    Article  CAS  Google Scholar 

  22. Abu-Lebdeh, Y., Abouimrane, A., Alarco, P.-J. & Armand, M. Ionic liquid and plastic crystalline phases of pyrazolium imide salts as electrolytes for rechargeable lithium-ion batteries. J. Power Sources 154, 255–261 (2006).

    Article  CAS  Google Scholar 

  23. Han, H.-B. et al. Ionic liquids and plastic crystals based on tertiary sulfonium and bis(fluorosulfonyl)imide. Electrochim. Acta 55, 1221–1226 (2010).

    Article  CAS  Google Scholar 

  24. Forsyth, M. et al. Structure and dynamics in an organic ionic plastic crystal, N-ethyl-N-methyl pyrrolidinium bis(trifluoromethanesulfonyl) amide, mixed with a sodium salt. J. Mater. Chem. A 2, 3993–4003 (2014).

    Article  CAS  Google Scholar 

  25. Zhou, Y. et al. Ternary lithium-salt organic ionic plastic crystal polymer composite electrolytes for high voltage, all-solid-state batteries. Energy Storage Mater. 15, 407–414 (2018).

    Article  Google Scholar 

  26. Wade, C. R., Zhao, H. & Gabbaï, F. P. Stabilization of zwitterionic aryltrifluoroborates against hydrolysis. Chem. Commun. 46, 6380–6381 (2010).

    Article  CAS  Google Scholar 

  27. Raushel, J. et al. Reinvestigation of aminomethyltrifluoroborates and their application in Suzuki−Miyaura cross-coupling reactions. J. Org. Chem. 76, 2762–2769 (2011).

    Article  CAS  Google Scholar 

  28. Efthimiadis, J., Forsyth, M. & MacFarlane, D. R. A surface characterisation and microstructural study by scanning electron microscopy of the N-methyl-N-alkylpyrrolidinium tetrafluoroborate organic salts. J. Mater. Sci. 38, 3293–3301 (2003).

    Article  CAS  Google Scholar 

  29. Iranipour, N. et al. Effect of secondary phase on thermal behaviour and solid-state ion conduction in lithium doped N-ethyl-N-methylpyrrolidinium tetrafluoroborate organic ionic plastic crystal. J. Mater. Chem. A 5, 24909–24919 (2017).

    Article  CAS  Google Scholar 

  30. Sharma, J. P. & Singh, V. Influence of high and low dielectric constant plasticizers on the ion transport properties of PEO: NH4HF2 polymer electrolytes. High. Perform. Polym. 32, 142–150 (2020).

    Article  CAS  Google Scholar 

  31. Dai, Y. et al. Electrical, thermal and NMR investigation of composite solid electrolytes based on PEO, LiI and high surface area inorganic oxides. Electrochim. Acta 43, 1557–1561 (1998).

    Article  CAS  Google Scholar 

  32. Jin, L. et al. Structure and transport properties of a plastic crystal ion conductor: diethyl(methyl)(isobutyl)phosphonium hexafluorophosphate. J. Am. Chem. Soc. 134, 9688–9697 (2012).

    Article  CAS  Google Scholar 

  33. Seeber, A. J. et al. Conductivity, NMR and crystallographic study of N,N,N,N-tetramethylammonium dicyanamide plastic crystal phases: an archetypal ambient temperature plastic electrolyte material. Phys. Chem. Chem. Phys. 5, 2692–2698 (2003).

    Article  CAS  Google Scholar 

  34. Iranipour, N. Organic Ionic Plastic Crystal Nanofibre Composites as Solid State Electrolytes. PhD thesis, Deakin Univ. (2016).

  35. Kitamura, M. et al. Synthesis of pyrrolidinium salts using a triazine-based reagent under mild conditions. Chem. Lett. 43, 1593–1595 (2014).

    Article  CAS  Google Scholar 

  36. Palacios, E., Melero, J. J., Burriel, R. & Ferloni, P. Structural, calorimetric, and Monte Carlo investigation of the order–disorder transition of BF4 in (CH3)4NBF4. Phys. Rev. B 54, 9099–9108 (1996).

    Article  CAS  Google Scholar 

  37. Lu, S.-Q. et al. High-temperature sequential structural transitions with distinct switchable dielectric behaviors in two organic ionic plastic crystals: [C4H11NBr] [ClO4] and [C4H11NBr] [BF4]. CrystEngComm 20, 454–459 (2018).

    Article  CAS  Google Scholar 

  38. Pas, S. J. et al. Defect-assisted conductivity in organic ionic plastic crystals. J. Chem. Phys. 122, 064704 (2005).

    Article  Google Scholar 

  39. Henderson, W. A. et al. An alternative ionic conductivity mechanism for plastic crystalline salt–lithium salt electrolyte mixtures. Adv. Energy Mater. 2, 1343–1350 (2012).

    Article  CAS  Google Scholar 

  40. Budi, A. et al. Study of the initial stage of solid electrolyte interphase formation upon chemical reaction of lithium metal and N-methyl-N-propyl-pyrrolidinium-bis(fluorosulfonyl)imide. J. Phys. Chem. C 116, 19789–19797 (2012).

    Article  CAS  Google Scholar 

  41. Grande, L. et al. Homogeneous lithium electrodeposition with pyrrolidinium-based ionic liquid electrolytes. ACS Appl. Mater. Interfaces 7, 5950–5958 (2015).

    Article  CAS  Google Scholar 

  42. Jin, L. et al. Lithium doped N,N-dimethyl pyrrolidinium tetrafluoroborate organic ionic plastic crystal electrolytes for solid state lithium batteries. J. Mat. Chem. 21, 10171–10178 (2011).

    Article  CAS  Google Scholar 

  43. Evans, J., Vincent, C. A. & Bruce, P. G. Electrochemical measurement of transference numbers in polymer electrolytes. Polymer 28, 2324–2328 (1987).

    Article  CAS  Google Scholar 

  44. Basile, A., Hollenkamp, A. F., Bhatt, A. I. & O’Mullane, A. P. Extensive charge–discharge cycling of lithium metal electrodes achieved using ionic liquid electrolytes. Electrochem. Commun. 27, 69–72 (2013).

    Article  CAS  Google Scholar 

  45. Porcarelli, L. et al. Single–ion conducting polymer nanoparticles as functional fillers for solid electrolytes in lithium metal batteries. Preprint at ChemRxiv https://chemrxiv.org/engage/chemrxiv/article-details/61256a9b9d6e6e78d674049f (2021).

  46. Long, L., Wang, S., Xiao, M. & Meng, Y. Polymer electrolytes for lithium polymer batteries. J. Mater. Chem. A 4, 10038–10069 (2016).

    Article  CAS  Google Scholar 

  47. Monroe, C. & Newman, J. The impact of elastic deformation on deposition kinetics at lithium/polymer interfaces. J. Electrochem. Soc. 152, A396 (2005).

    Article  CAS  Google Scholar 

  48. Qian, J. et al. High rate and stable cycling of lithium metal anode. Nat. Commun. 6, 6362 (2015).

    Article  CAS  Google Scholar 

  49. Forsyth, M. et al. Inorganic-organic ionic liquid electrolytes enabling high energy-density metal electrodes for energy storage. Electrochim. Acta 220, 609–617 (2016).

    Article  CAS  Google Scholar 

  50. Perez Beltran, S., Cao, X., Zhang, J.-G. & Balbuena, P. B. Localized high concentration electrolytes for high voltage lithium–metal batteries: correlation between the electrolyte composition and its reductive/oxidative stability. Chem. Mater. 32, 5973–5984 (2020).

    Article  CAS  Google Scholar 

  51. CrysAlisPro v.1.171.39.46 (Rigaku Oxford Diffraction, 2018).

  52. Sheldrick, G. Crystal structure refinement with SHELXL. Acta Crystallogr. Sect. C 71, 3–8 (2015).

    Article  Google Scholar 

  53. Guan, X. & Stark, R. E. A general protocol for temperature calibration of MAS NMR probes at arbitrary spinning speeds. Solid State Nucl. Magn. Reson. 38, 74–76 (2010).

    Article  CAS  Google Scholar 

  54. Bielecki, A. & Burum, D. P. Temperature dependence of 207Pb MAS spectra of solid lead nitrate. An accurate, sensitive thermometer for variable-temperature MAS. J. Magn. Reson. A 116, 215–220 (1995).

    Article  CAS  Google Scholar 

  55. Bruce, P. G. & Vincent, C. A. Steady state current flow in solid binary electrolyte cells. J. Electroanal. Chem. 225, 1–17 (1987).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Australian Research Council (ARC) through Discovery Grant DP170101087, the Centre of Excellence for Electromaterials Science (CE140100012) and the ARC Training Centre for Future Energy Storage Technologies (IC180100049). L.P. received funding from the European Union’s Horizon 2020 research and innovation programme under the Marie Skłodowska–Curie grant agreement no. 797295. D.M. acknowledges funding by the Basque Government through Elkartek KK-2020/00078 and Agencia Estatal de Investigación (PID2020-119026GB-I00).

Author information

Authors and Affiliations

Authors

Contributions

F.M. designed and executed the experiments, analysed data and prepared the manuscript. L.A.O. supervised NMR experiments, analysed data and edited the manuscript. L.P. designed and synthesized the NPs and analysed results. C.F. collected X-ray structure data and analysed and interpreted results. N.Q., M.A. and O.H. synthesized zwitterions, including the experimental design, execution and analysis of synthesis results. D.M. conceived and designed the lithium-functionalized polymer NPs. M.F. contributed to project planning, interpretation of results and manuscript editing. J.M.P. contributed to project concept and design, interpretation of results and manuscript preparation.

Corresponding author

Correspondence to Jennifer M. Pringle.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Catalin Gainaru and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–19, Tables 1–4 and Discussion.

Supplementary Data

Crystallographic information file for ZI(1).

Source data

Source Data Fig. 2

Statistical source data.

Source Data Fig. 3

Statistical source data.

Source Data Fig. 4

Statistical source data.

Source Data Fig. 5

Statistical source data.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makhlooghiazad, F., O’Dell, L.A., Porcarelli, L. et al. Zwitterionic materials with disorder and plasticity and their application as non-volatile solid or liquid electrolytes. Nat. Mater. 21, 228–236 (2022). https://doi.org/10.1038/s41563-021-01130-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01130-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing