Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure


Porous materials with engineered stretching-dominated lattice designs, which offer attractive mechanical properties with ultra-light weight and large surface area for wide-ranging applications, have recently achieved near-ideal linear scaling between stiffness and density. Here, rather than optimizing the microlattice topology, we explore a different approach to strengthen low-density structural materials by designing tube-in-tube beam structures. We develop a process to transform fully dense, three-dimensional printed polymeric beams into graphitic carbon hollow tube-in-tube sandwich morphologies, where, similar to grass stems, the inner and outer tubes are connected through a network of struts. Compression tests and computational modelling show that this change in beam morphology dramatically slows down the decrease in stiffness with decreasing density. In situ pillar compression experiments further demonstrate large deformation recovery after 30–50% compression and high specific damping merit index. Our strutted tube-in-tube design opens up the space and realizes highly desirable high modulus–low density and high modulus–high damping material structures.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: 3D printing and post processing to convert solid polymeric beams into STinT carbon structures.
Fig. 2: Young’s modulus of the STinT carbon structures and comparison with other materials.
Fig. 3: Finite element modelling.
Fig. 4: In situ SEM compression tests with varying sample aspect ratios and architectures.
Fig. 5: Specific damping merit index (E0.5η/ρ) versus specific modulus (E/ρ).

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its supplementary information files. Source data are provided with this paper.


  1. 1.

    Meza, L. R., Das, S. & Greer, J. R. Strong, lightweight, and recoverable three-dimensional ceramic nanolattices. Science 345, 1322–1326 (2014).

    CAS  Article  Google Scholar 

  2. 2.

    Bauer, J., Schroer, A., Schwaiger, R. & Kraft, O. Approaching theoretical strength in glassy carbon nanolattices. Nat. Mater. 15, 438–443 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Biener, J. et al. Advanced carbon aerogels for energy applications. Energy Environ. Sci. 4, 656–667 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    Yang, Z.-Y. et al. Sponge-templated preparation of high surface area graphene with ultrahigh capacitive deionization performance. Adv. Funct. Mater. 24, 3917–3925 (2014).

    CAS  Article  Google Scholar 

  5. 5.

    Oakdale, J. S. et al. Direct laser writing of low-density interdigitated foams for plasma drive shaping. Adv. Funct. Mater. 27, 1702425 (2017).

    Article  CAS  Google Scholar 

  6. 6.

    Frenzel, T., Findeisen, C., Kadic, M., Gumbsch, P. & Wegener, M. Tailored buckling microlattices as reusable light-weight shock absorbers. Adv. Mater. 28, 5865–5870 (2016).

    CAS  Article  Google Scholar 

  7. 7.

    Nishide, H. & Oyaizu, K. Materials science. Toward flexible batteries. Science 319, 737–738 (2008).

    CAS  Article  Google Scholar 

  8. 8.

    Qiu, L., Liu, J. Z., Chang, S. L. Y., Wu, Y. & Li, D. Biomimetic superelastic graphene-based cellular monoliths. Nat. Commun. 3, 1241 (2012).

    Article  CAS  Google Scholar 

  9. 9.

    Gross, J. & Fricke, J. Scaling of elastic properties in highly porous nanostructured aerogels. Nanostruct. Mater. 6, 905–908 (1995).

    Article  Google Scholar 

  10. 10.

    Pekala, R. W., Alviso, C. T. & Lemay, J. D. Organic aerogels: microstructural dependence of mechanical-properties in compression. J. Non Cryst. Solids 125, 67–75 (1990).

    CAS  Article  Google Scholar 

  11. 11.

    Bock, V., Emmerling, A. & Fricke, J. Influence of monomer and catalyst concentration on RF and carbon aerogel structure. J. Non Cryst. Solids 225, 69–73 (1998).

    CAS  Article  Google Scholar 

  12. 12.

    Worsley, M. A., Kucheyev, S. O., Satcher, J. H., Hamza, A. V. & Baumann, T. F. Mechanically robust and electrically conductive carbon nanotube foams. Appl. Phys. Lett. 94, 073115 (2009).

    Article  CAS  Google Scholar 

  13. 13.

    Barg, S. et al. Mesoscale assembly of chemically modified graphene into complex cellular networks. Nat. Commun. 5, 5328 (2014).

    Article  CAS  Google Scholar 

  14. 14.

    Ni, N. et al. Understanding mechanical response of elastomeric graphene networks. Sci. Rep. 5, 13712 (2015).

    Article  Google Scholar 

  15. 15.

    Zhang, X. et al. Mechanically strong and highly conductive graphene aerogel and its use as electrodes for electrochemical power sources. J. Mater. Chem. 21, 6494–6497 (2011).

    CAS  Article  Google Scholar 

  16. 16.

    Saane, S. S. R. & Onck, P. R. Atomistic modeling of the stiffness, strength and charge-induced actuation of graphene nanofoams. Extrem. Mech. Lett. 5, 54–61 (2015).

    Article  Google Scholar 

  17. 17.

    Qin, Z., Jung, G. S., Kang, M. J. & Buehler, M. J. The mechanics and design of a lightweight three-dimensional graphene assembly. Sci. Adv. 3, e1601536 (2017).

    Article  CAS  Google Scholar 

  18. 18.

    Zheng, X. Y. et al. Ultralight, ultrastiff mechanical metamaterials. Science 344, 1373–1377 (2014).

    CAS  Article  Google Scholar 

  19. 19.

    García‐Tuñon, E. et al. Printing in three dimensions with graphene. Adv. Mater. 27, 1688–1693 (2015).

    Article  CAS  Google Scholar 

  20. 20.

    Zhu, C. et al. Highly compressible 3D periodic graphene aerogel microlattices. Nat. Commun. 6, 6962 (2015).

    CAS  Article  Google Scholar 

  21. 21.

    Bückmann, T., Thiel, M., Kadic, M., Schittny, R. & Wegener, M. An elasto-mechanical unfeelability cloak made of pentamode metamaterials. Nat. Commun. 5, 4130 (2014).

    Article  CAS  Google Scholar 

  22. 22.

    Frenzel, T., Kadic, M. & Wegener, M. Three-dimensional mechanical metamaterials with a twist. Science 358, 1072–1074 (2017).

    CAS  Article  Google Scholar 

  23. 23.

    Tancogne‐Dejean, T., Diamantopoulou, M., Gorji, M. B., Bonatti, C. & Mohr, D. 3D plate‐lattices: an emerging class of low‐density metamaterial exhibiting optimal isotropic stiffness. Adv. Mater. 30, 1803334 (2018).

    Article  CAS  Google Scholar 

  24. 24.

    Guell Izard, A., Bauer, J., Crook, C., Turlo, V. & Valdevit, L. Ultrahigh energy absorption multifunctional spinodal nanoarchitectures. Small 15, 1903834 (2019).

    CAS  Article  Google Scholar 

  25. 25.

    Crook, C. et al. Plate-nanolattices at the theoretical limit of stiffness and strength. Nat. Commun. 11, 1579 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Jacobsen, A. J., Mahoney, S., Carter, W. B. & Nutt, S. Vitreous carbon micro-lattice structures. Carbon 49, 1025–1032 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Zhang, X., Vyatskikh, A., Gao, H., Greer, J. R. & Li, X. Lightweight, flaw-tolerant, and ultrastrong nanoarchitected carbon. Proc. Natl Acad. Sci. USA 116, 6665–6672 (2019).

    CAS  Article  Google Scholar 

  28. 28.

    Meza, L. R. et al. Resilient 3D hierarchical architected metamaterials. Proc. Natl Acad. Sci. USA 112, 11502–11507 (2015).

    CAS  Article  Google Scholar 

  29. 29.

    Zheng, X. et al. Multiscale metallic metamaterials. Nat. Mater. 15, 1100–1107 (2016).

    CAS  Article  Google Scholar 

  30. 30.

    Oakdale, J. S., Ye, J., Smith, W. L. & Biener, J. Post-print UV curing method for improving the mechanical properties of prototypes derived from two-photon lithography. Opt. Express 24, 27077–27086 (2016).

    CAS  Article  Google Scholar 

  31. 31.

    Xiao, X. et al. Lithographically defined three-dimensional graphene structures. ACS Nano 6, 3573–3579 (2012).

    CAS  Article  Google Scholar 

  32. 32.

    Cebo, T. et al. Chemical vapour deposition of freestanding sub-60 nm graphene gyroids. Appl. Phys. Lett. 111, 253103 (2017).

    Article  CAS  Google Scholar 

  33. 33.

    Garcia, A. E. et al. Scalable synthesis of gyroid-inspired freestanding three-dimensional graphene architectures. Nanoscale Adv. 1, 3870–3882 (2019).

    CAS  Article  Google Scholar 

  34. 34.

    Gray, H. Anatomy of the Human Body Vol. 8 (Lea & Febiger, 1878).

  35. 35.

    Gibson, L. J., Ashby, M. F. & Harley, B. A. Cellular Materials in Nature and Medicine (Cambridge Univ. Press, 2010).

  36. 36.

    Karam, G. & Gibson, L. Elastic buckling of cylindrical shells with elastic cores–I. Analysis. Int. J. Solids Struct. 32, 1259–1284 (1995).

    Article  Google Scholar 

  37. 37.

    Dawson, M. A. & Gibson, L. J. Optimization of cylindrical shells with compliant cores. Int. J. Solids Struct. 44, 1145–1160 (2007).

    Article  Google Scholar 

  38. 38.

    Allen, H. G. Analysis and Design of Structural Sandwich Panels (Elsevier, 2013).

  39. 39.

    Sullivan, T. N., Wang, B., Espinosa, H. D. & Meyers, M. A. Extreme lightweight structures: avian feathers and bones. Mater. Today 20, 377–391 (2017).

    Article  Google Scholar 

  40. 40.

    Xiong, W. et al. Laser‐directed assembly of aligned carbon nanotubes in three dimensions for multifunctional device fabrication. Adv. Mater. 28, 2002–2009 (2016).

    CAS  Article  Google Scholar 

  41. 41.

    Mu, X. et al. Porous polymeric materials by 3D printing of photocurable resin. Mater. Horiz. 4, 442–449 (2017).

    CAS  Article  Google Scholar 

  42. 42.

    do Rosário, J. J., Häntsch, Y., Schneider, G. A. & Lilleodden, E. T. A combined compression and indentation study of mechanical metamaterials based on inverse opal coatings. Acta Mater. 195, 98–108 (2020).

    Article  CAS  Google Scholar 

  43. 43.

    Ashby, M. F. The properties of foams and lattices. Phil. Trans. R. Soc. A 364, 15–30 (2006).

    CAS  Article  Google Scholar 

  44. 44.

    Juodkazis, S., Mizeikis, V., Seet, K. K., Misawaa, H. & Wegst, U. G. K. Mechanical properties and tuning of three-dimensional polymeric photonic crystals. Appl. Phys. Lett. 91, 241904 (2007).

    Article  CAS  Google Scholar 

  45. 45.

    Schaedler, T. A. et al. Ultralight metallic microlattices. Science 334, 962–965 (2011).

    CAS  Article  Google Scholar 

  46. 46.

    Hashin, Z. & Shtrikman, S. A variational approach to the theory of the elastic behaviour of multiphase materials. J. Mech. Phys. Solids 11, 127–140 (1963).

    Article  Google Scholar 

  47. 47.

    Maloney, K. J. et al. Microlattices as architected thin films: analysis of mechanical properties and high strain elastic recovery. APL Mater. 1, 022106 (2013).

    Article  CAS  Google Scholar 

  48. 48.

    Saha, S. K. et al. Scalable submicrometer additive manufacturing. Science 366, 105–109 (2019).

    CAS  Article  Google Scholar 

  49. 49.

    San Juan, J., No, M. L. & Schuh, C. A. Nanoscale shape-memory alloys for ultrahigh mechanical damping. Nat. Nanotechnol. 4, 415–419 (2009).

    CAS  Article  Google Scholar 

  50. 50.

    Zhang, X. et al. Three-dimensional high-entropy alloy–polymer composite nanolattices that overcome the strength–recoverability trade-off. Nano Lett. 18, 4247–4256 (2018).

    CAS  Article  Google Scholar 

  51. 51.

    Doolittle, L. R. Algorithms for the rapid simulation of Rutherford backscattering spectra. Nucl. Instrum. Methods B 9, 344–351 (1985).

    Article  Google Scholar 

  52. 52.

    Chu, W., Mayer, J. & Nicolet, M. Backscattering Spectrometry (Academic Press, 1978).

  53. 53.

    Lespade, P., Marchand, A., Couzi, M. & Cruege, F. Caracterisation de materiaux carbones par microspectrometrie Raman. Carbon 22, 375–385 (1984).

    CAS  Article  Google Scholar 

  54. 54.

    Vallerot, J.-M., Bourrat, X., Mouchon, A. & Chollon, G. Quantitative structural and textural assessment of laminar pyrocarbons through Raman spectroscopy, electron diffraction and few other techniques. Carbon 44, 1833–1844 (2006).

    CAS  Article  Google Scholar 

  55. 55.

    McEvoy, N. et al. Synthesis and analysis of thin conducting pyrolytic carbon films. Carbon 50, 1216–1226 (2012).

    CAS  Article  Google Scholar 

  56. 56.

    Schuepfer, D. B. et al. Assessing the structural properties of graphitic and non-graphitic carbons by Raman spectroscopy. Carbon 161, 359–372 (2020).

    CAS  Article  Google Scholar 

  57. 57.

    Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).

    CAS  Article  Google Scholar 

  58. 58.

    Blakslee, O., Proctor, D., Seldin, E., Spence, G. & Weng, T. Elastic constants of compression‐annealed pyrolytic graphite. J. Appl. Phys. 41, 3373–3382 (1970).

    CAS  Article  Google Scholar 

  59. 59.

    ABAQUS/Standard User’s Manual Vol. 1 (Hibbitt, Karlsson & Sorensen, 2001).

  60. 60.

    Robertson, J. Amorphous carbon. Adv. Phys. 35, 317–374 (1986).

    CAS  Article  Google Scholar 

  61. 61.

    Onck, P. R., Andrews, E. W. & Gibson, L. J. Size effects in ductile cellular solids. Part I: modeling. Int. J. Mech. Sci. 43, 681–699 (2001).

    Article  Google Scholar 

Download references


We thank J.-B. Forien, M. A. Worsley, C. Zhu and X. Zheng for helpful discussions. The work was performed under the auspices of the US Department of Energy by LLNL under contract no. DE-AC52-07NA27344. The project was supported by the Laboratory Directed Research and Development (LDRD) programme of LLNL (15-ERD-019) (to J.B.). L.L. and P.R.O. would like to acknowledge financial support from the Dutch Polymer Institute (DPI) through project no. 775. Y.M.W. was partially supported by NSF DMR-2104933.

Author information




J.B., J.Y. and P.R.O. conceived and guided the research. J.O. and W.L.S. designed and printed log-pile structures. J.Y. performed Ni electroless plating and carbon conversion. M.M.B. assisted in post processing. J.Y. performed mechanical testing and characterizations. J.L., S.B. and J.Y. conducted in situ pillar compression tests. T.V. and J.D.R. conducted TEM and tomography analysis. M.R.C. ran the TGA analysis. L.B.B.A. carried out ERDA analysis. L.L., P.R.O. and J.v.H. conducted finite element analysis. J.Y., L.L., J.B. and P.R.O. drafted the manuscript. Y.M.W. suggested extra mechanical analysis and manuscript revisions. All authors commented on the drafts.

Corresponding authors

Correspondence to Jianchao Ye, Patrick R. Onck or Juergen Biener.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Xiaoyan Li and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Discussions, Figs. 1–23 and Tables 1–5.

Supplementary Video 1

STEM images of a STinT carbon beam with tilting angles from −71° to 71° with 2° steps.

Supplementary Video 2

TEM images of a STinT carbon beam with tilting angles from −67° to 68° with 3° steps.

Supplementary Video 3

A 3D reconstruction of a STinT carbon beam using TEM tomography.

Supplementary Video 4

In situ SEM compression on a 1:1 aspect ratio FCT STinT carbon pillar with pitch size of 10 μm.

Supplementary Video 5

Zoomed-in in situ SEM compression on a 1:1 aspect ratio SC STinT carbon pillar with pitch size of 10 μm.

Supplementary Video 6

In situ SEM flat-punch indent near edge of a SC STinT carbon plate with pitch size of 5 μm.

Supplementary Video 7

In situ SEM compression up to 10% strain on a 2.5:1 aspect ratio SC STinT carbon pillar with pitch size of 10 μm.

Supplementary Video 8

In situ SEM compression up to 30% strain on a 2.5:1 aspect ratio SC STinT carbon pillar with pitch size of 10 μm.

Supplementary Video 9

In situ SEM compression up to 50% strain on a 2.5:1 aspect ratio SC STinT carbon pillar with pitch size of 10 μm.

Source data

Source Data Fig. 1

Raman spectra of STinT carbons.

Source Data Fig. 2

Modulus versus density plots.

Source Data Fig. 3

Raw data discussing relationships of Ni-layer thickness, STinT carbon density, modulus and mass ratio.

Source Data Fig. 4

Raw data of engineering stress–strain curves.

Source Data Fig. 5

Raw data of damping properties from our STinT carbon and references.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Ye, J., Liu, L., Oakdale, J. et al. Ultra-low-density digitally architected carbon with a strutted tube-in-tube structure. Nat. Mater. 20, 1498–1505 (2021).

Download citation

Further reading


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing