Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Solvent-free autocatalytic supramolecular polymerization

Abstract

Solvent-free chemical manufacturing is one of the awaited technologies for addressing an emergent issue of environmental pollution. Here, we report solvent-free autocatalytic supramolecular polymerization (SF-ASP), which provides an inhibition-free template-assisted catalytic organic transformation that takes great advantage of the fact that the product (template) undergoes a termination-free nucleation–elongation assembly (living supramolecular polymerization) under solvent-free conditions. SF-ASP allows for reductive cyclotetramerization of hydrogen-bonding phthalonitriles into the corresponding phthalocyanines in exceptionally high yields (>80%). SF-ASP requires the growing polymer to form hexagonally packed crystalline fibres, which possibly preorganize the phthalonitriles at their cross-sectional edges for their efficient transformation. With metal oleates, SF-ASP produces single-crystalline fibres of metallophthalocyanines again in exceptionally high yields, which grow in both directions without terminal coupling until the phthalonitrile precursors are completely consumed. By taking advantage of this living nature of polymerization, multistep SF-ASP without/with metal oleates allows for the precision synthesis of multi-block supramolecular copolymers.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Autocatalysis driven by solvent-free supramolecular polymerization.
Fig. 2: Characterization of SF-ASP.
Fig. 3: Characterization of [HPCC4]CF obtained by SF-ASP.
Fig. 4: Sequence and orientation controls of crystalline fibres obtained by SF-ASP.

Similar content being viewed by others

Data availability

Data generated or analysed during this study are provided as source data or included in the Supplementary Information. Further data are available from the corresponding authors on request. Source data are provided with this paper.

References

  1. Lau, W. W. Y. et al. Evaluating scenarios towards zero plastic pollution. Science 369, 1455–1461 (2020).

    Article  CAS  Google Scholar 

  2. Aida, T., Meijer, E. W. & Stupp, S. I. Functional supramolecular polymers. Science 335, 813–817 (2012).

    Article  CAS  Google Scholar 

  3. Aida, T. & Meijer, E. W. Supramolecular polymers–we’ve come full circle. Isr. J. Chem. 60, 33–47 (2020).

    Article  CAS  Google Scholar 

  4. De Greef, T. F. A. et al. Supramolecular polymerization. Chem. Rev. 109, 5687–5754 (2009).

    Article  Google Scholar 

  5. Besenius, P. Controlling supramolecular polymerization through multicomponent self-assembly. J. Polym. Sci. A.: Polym. Chem. 55, 34–78 (2017).

    Article  CAS  Google Scholar 

  6. Hashim, P. K., Bergueiro, J., Meijer, E. W. & Aida, T. Supramolecular polymerization: a conceptual expansion for innovative materials. Prog. Polym. Sci. 105, 101250 (2020).

    Article  CAS  Google Scholar 

  7. Tanaka, K. & Toda, F. Solvent-free organic synthesis. Chem. Rev. 100, 1025–1074 (2000).

    Article  CAS  Google Scholar 

  8. Zimmerman, J. B., Anastas, P. T., Erythropel, H. C. & Leitner, W. Designing for a green chemistry future. Science 367, 397–400 (2020).

    Article  CAS  Google Scholar 

  9. Zerkowski, J. A., Seto, C. T., Wierda, D. A. & Whitesides, G. M. Design of organic structures in the solid state: hydrogen-bonded molecular ‘tapes’. J. Am. Chem. Soc. 112, 9025–9026 (1990).

    Article  CAS  Google Scholar 

  10. Fouquey, C., Lehn, J. M. & Levelut, A. M. Molecular recognition directed self-assembly of supramolecular liquid crystalline polymers from complementary chiral components. Adv. Mater. 2, 254–257 (1990).

    Article  CAS  Google Scholar 

  11. Lee, C. M., Jariwala, C. P. & Griffin, A. C. Heteromeric liquid-crystalline association chain polymers: structure and properties. Polymer 35, 4550–4554 (1994).

    Article  CAS  Google Scholar 

  12. Rao, K. V., Miyajima, D., Nihonyanagi, A. & Aida, T. Thermally bisignate supramolecular polymerization. Nat. Chem. 9, 1133–1139 (2017).

    Article  Google Scholar 

  13. Van Zee, N. J. et al. Potential enthalpic energy of water in oils exploited to control supramolecular structure. Nature 558, 100–103 (2018).

    Article  Google Scholar 

  14. Datta, S. et al. Self-assembled polycatenanes from supramolecular toroidal building blocks. Nature 583, 400–405 (2020).

    Article  CAS  Google Scholar 

  15. Bissette, A. J. & Fletcher, S. P. Mechanism of autocatalysis. Angew. Chem. Int. Ed. 52, 12800–12826 (2013).

    Article  CAS  Google Scholar 

  16. Schrodinger, E. What Is Life?—The Physical Aspect of the Living Cell (Cambridge Univ. Press, 1944).

  17. Robertson, M. P. & Joyce, G. F. The origins of the RNA world. Cold Spring Harb. Perspect. Biol. 4, a003608 (2012).

    Article  Google Scholar 

  18. Orgel, L. E. Molecular replication. Nature 358, 203–209 (1992).

    Article  CAS  Google Scholar 

  19. Lee, D. H., Granja, J. R., Martinez, J. A., Severin, K. & Ghadiri, M. R. A self-replicating peptide. Nature 382, 525–528 (1996).

    Article  CAS  Google Scholar 

  20. Paul, N. & Joyce, G. F. A self-replicating ligase ribozyme. Proc. Natl Acad. Sci. USA 99, 12733–12740 (2002).

    Article  CAS  Google Scholar 

  21. Robertson, A., Sinclair, A. J. & Philp, D. Minimal self-replicating systems. Chem. Soc. Rev. 29, 141–152 (2000).

    Article  CAS  Google Scholar 

  22. Vidonne, A. & Philp, D. Making molecules make themselvesthe chemistry of artificial replicators. Eur. J. Org. Chem. 2009, 593–610 (2009).

    Article  Google Scholar 

  23. Carnall, J. M. A. et al. Mechanosensitive self-replication driven by self-organization. Science 327, 1502–1506 (2010).

    Article  CAS  Google Scholar 

  24. Colomb-Delsuc, M., Mattia, E., Sadownik, J. W. & Otto, S. Exponential self-replication enabled through a fibre elongation/breakage mechanism. Nat. Commun. 6, 7274 (2015).

    Article  Google Scholar 

  25. Takahashi, Y. & Mihara, H. Construction of a chemically and conformationally self-replicating system of amyloid-like fibrils. Bioorg. Med. Chem. 12, 693–699 (2004).

    Article  CAS  Google Scholar 

  26. Rubinov, B., Wathaniel, W., Rapaport, H. & Ashkenasy, G. Self-replicating amphiphilic β-sheet peptides. Angew. Chem. Int. Ed. 48, 6683–6686 (2009).

    Article  CAS  Google Scholar 

  27. Rubinov, B. et al. Transient fibril structures facilitating nonenzymatic self-replication. ACS Nano 6, 7893–7901 (2012).

    Article  CAS  Google Scholar 

  28. Thrümer, K., Williams, E. & Reutt-Robey, J. Autocatalytic oxidation of lead crystalline surface. Science 297, 2033–2035 (2002).

    Article  Google Scholar 

  29. Liu, Q. et al. Quantifying the nucleation and growth kinetics of microwave nanochemistry enabled by in situ high-energy X-ray scattering. Nano Lett. 16, 715–720 (2016).

    Article  Google Scholar 

  30. Morrow, S. M., Colomer, I. & Fletcher, S. P. A chemically fueled self-replicator. Nat. Commun. 10, 1011 (2019).

    Article  Google Scholar 

  31. Semenov, S. N. et al. Autocatalytic, bistable, oscillatory networks of biologically relevant organic reactions. Nature 537, 656–660 (2016).

    Article  CAS  Google Scholar 

  32. Colomer, I., Morrow, S. M. & Fletcher, S. P. A transient self-assembling self-replicator. Nat. Commun. 9, 2239 (2018).

    Article  Google Scholar 

  33. Kumar, M. et al. Amino-acid-encoded biocatalytic self-assembly enables the formation of transient conducting nanostructures. Nat. Chem. 10, 696–703 (2018).

    Article  CAS  Google Scholar 

  34. Epstein, I. R. & Xu, B. Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11, 312–319 (2016).

    Article  CAS  Google Scholar 

  35. Miyajima, D. et al. Ferroelectric columnar liquid crystal featuring confined polar groups within core-shell architecture. Science 336, 209–213 (2012).

    Article  CAS  Google Scholar 

  36. Klapperich, C., Komvopoulos, K. & Pruitt, L. Nanomechanical properties of polymers determined from nanoindentation experiments. J. Tribol. 123, 624–631 (2001).

    Article  CAS  Google Scholar 

  37. Kadish, K. M., Smith, K. M. & Guilard, R. The Porphyrin Handbook: Phthalocyanine: Synthesis (Academic Press, 2003).

  38. Narayanasamy, J. & Kubichi, J. D. Mechanism of hydroxyl radical generation from a silica surface: molecular orbital calculations. J. Phys. Chem. B 109, 21796–21807 (2005).

    Article  CAS  Google Scholar 

  39. Gierada, M., Proft, F. D., Sulpizi, M. & Tielens, F. Understanding the acidic properties of the amorphous hydroxylated silica surface. J. Phys. Chem. C. 123, 17343–17352 (2019).

    Article  CAS  Google Scholar 

  40. Inabe, T. & Tajima, H. Phthalocyanines—versatile components of molecular conductors. Chem. Rev. 104, 5503–5533 (2004).

    Article  CAS  Google Scholar 

  41. Sorokin, A. B. Phthalocyanine metal complexes in catalysis. Chem. Rev. 113, 8152–8191 (2013).

    Article  CAS  Google Scholar 

  42. Melville, O. A., Lessard, B. H. & Bender, T. P. Phthalocyanine-based organic thin-film transistors: a review of recent advances. ACS Appl. Mater. Interfaces 7, 13105–13118 (2015).

    Article  CAS  Google Scholar 

  43. Wang, X. et al. Cylindrical block copolymer micelles and co-micelles of controlled length and architecture. Science 317, 644–647 (2007).

    Article  CAS  Google Scholar 

  44. Ogi, S., Sugiyasu, K., Manna, S., Samitsu, S. & Takeuchi, M. Living supramolecular polymerization realized through a biomimetic approach. Nat. Chem. 6, 188–195 (2014).

    Article  CAS  Google Scholar 

  45. Kang, J. et al. A rational strategy for the realization of chain-growth supramolecular polymerization. Science 347, 646–651 (2015).

    Article  CAS  Google Scholar 

  46. Wehner, M. & Würthner, F. Supramolecular polymerization through kinetic pathway control and living chain growth. Nat. Rev. Chem. 4, 38–53 (2020).

    Article  CAS  Google Scholar 

  47. Zhang, Y. et al. Organic single-crystalline p-n junction nanoribbons. J. Am. Chem. Soc. 132, 11580–11584 (2010).

    Article  CAS  Google Scholar 

  48. Zhang, W. et al. Supramolecular linear heterojunction composed of graphite-like semiconducting nanotubular segments. Science 334, 340–343 (2011).

    Article  CAS  Google Scholar 

  49. Wu, J., Li, Q., Xue, G., Chen, H. & Li, H. Preparation of single-crystalline heterojunctions for organic electronics. Adv. Mater. 29, 1606101 (2017).

    Article  Google Scholar 

  50. Adolf, C. R. R., Ferlay, S. & Hosseini, M. W. Molecular tectonics: control of crystalline sequences. Cryst. Eng. Comm. 20, 2233–2236 (2018).

    Article  CAS  Google Scholar 

  51. Miyajima, D. et al. Columnar liquid crystal with spontaneous polarization along the columnar axis. J. Am. Chem. Soc. 132, 8530–8531 (2010).

    Article  CAS  Google Scholar 

  52. Terazzi, E. et al. Molecular control of macroscopic cubic, columnar, and lamellar organizations in luminescent lanthanide-containing thermotropic liquid crystals. J. Am. Chem. Soc. 127, 888–903 (2005).

    Article  CAS  Google Scholar 

  53. Achalkumar, A. S. et al. Self-assembly of hekates-tris(n-salicylideneaniline)s into columnar structures: synthesis and characterization. J. Org. Chem. 78, 527–544 (2013).

    Article  CAS  Google Scholar 

  54. Chiu, W. S. et al. Synthesis of two-dimensional ZnO nanopellets by pyrolysis of zinc oleate. Chem. Eng. J. 142, 337–343 (2008).

    Article  CAS  Google Scholar 

  55. Bronstein, L. M. et al. Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem. Mater. 19, 3624–3632 (2007).

    Article  CAS  Google Scholar 

  56. Buck, M. R., Biacchi, A. J. & Schaak, R. E. Insight into the thermal decomposition of Co(II) oleate for the shape-controlled synthesis of wurtzite-type CoO nanocrystals. Chem. Mater. 26, 1492–1499 (2014).

    Article  CAS  Google Scholar 

  57. Clary, D. R. & Mills, G. Photochemical generation of nanometer-sized Cu particles in octane. J. Phys. Chem. C. 115, 14656–14663 (2011).

    Article  CAS  Google Scholar 

  58. Wittmann, J. C. & Simth, P. Highly oriented thin films of poly-(tetrafluoroethylene) as a substrate for oriented growth of materials. Nature 352, 414–417 (1991).

    Article  CAS  Google Scholar 

  59. Oliver, W. C. & Pharr, G. M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1568 (1992).

    Article  CAS  Google Scholar 

  60. Liu, M. et al. An anisotropic hydrogel with electrostatic repulsion between cofacially aligned nanosheets. Nature 517, 68–72 (2015).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank C. Zhang (RIKEN) and H. Gong (The University of Tokyo) for their generous experimental support. This work was financially supported by the Japan Society for the Promotion of Science (JSPS) through its Grants-in-Aid for Specially Promoted Research (25000005) on ‘Physically Perturbed Assembly for Tailoring High-Performance Soft Materials with Controlled Macroscopic Structural Anisotropy’ for T.A. D.M. thanks JSPS for a Young Scientist A (grant no. 15H05487) and Coordination Asymmetry (grant no. JP17H05394).

Author information

Authors and Affiliations

Authors

Contributions

Z.C. designed and preformed all experiments. Y.S., A.I. and X.J. designed and assisted partial experiments and analysed the data. K.V.R., Y.O., E.S. and A.N. performed partial synthetic experiments. D.M. and T.A. conceived the project and codesigned the experiments. Z.C., D.M. and T.A. analysed the data and wrote the paper.

Corresponding authors

Correspondence to Daigo Miyajima or Takuzo Aida.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–23, Tables 1–4, Videos 1 and 2 and Methods.

Supplementary Video 1

SF-ASP using PNC4 sandwiched between glass plates on heating at 160 °C, where the green-coloured thin fibres form.

Supplementary Video 2

SF-ASP using PNC4 in the presence of crystalline fibres of [HPCC4]CF as the seed sandwiched between CYTOP-coated glass plates on heating at 160 °C for 5 h, where the crystalline fibres elongate immediately.

Source data

Source Data Fig. 2

a, Time-dependent absorption changes at 700 nm of HPCs. b, Temperature effect on the yields of HPCC4. d, MALDI–TOF mass spectrometry data.

Source Data Fig. 3

b, PXRD data. f, Polarized infrared data.

Source Data Fig. 4

a, Time-dependent absorption changes at 700 nm of MPCC4.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, Z., Suzuki, Y., Imayoshi, A. et al. Solvent-free autocatalytic supramolecular polymerization. Nat. Mater. 21, 253–261 (2022). https://doi.org/10.1038/s41563-021-01122-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01122-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing