Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Electronic screening using a virtual Thomas–Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces

Abstract

Of relevance to energy storage, electrochemistry and catalysis, ionic and dipolar liquids display unexpected behaviours—especially in confinement. Beyond adsorption, over-screening and crowding effects, experiments have highlighted novel phenomena, such as unconventional screening and the impact of the electronic nature—metallic versus insulating—of the confining surface. Such behaviours, which challenge existing frameworks, highlight the need for tools to fully embrace the properties of confined liquids. Here we introduce a novel approach that involves electronic screening while capturing molecular aspects of interfacial fluids. Although available strategies consider perfect metal or insulator surfaces, we build on the Thomas–Fermi formalism to develop an effective approach that deals with any imperfect metal between these asymptotes. Our approach describes electrostatic interactions within the metal through a ‘virtual’ Thomas–Fermi fluid of charged particles, whose Debye length sets the screening length λ. We show that this method captures the electrostatic interaction decay and electrochemical behaviour on varying λ. By applying this strategy to an ionic liquid, we unveil a wetting transition on switching from insulating to metallic conditions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Electrostatic interactions in the vicinity of metal surfaces.
Fig. 2: Induced charges and screening at metallic surfaces.
Fig. 3: Screened electrostatic interactions through the use of a virtual TF fluid.
Fig. 4: Capacitive behaviour of virtual TF fluids.
Fig. 5: Capillary freezing at metallic surfaces.
Fig. 6: Wetting transition of ionic liquids at metal surfaces.

Similar content being viewed by others

Data availability

All the relevant simulation input scripts are available in this repository: Schlaich, Alexander, 2021, ‘Simulation input scripts for “Electronic screening using a virtual Thomas-Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces”’, https://doi.org/10.18419/darus-2115, DaRUS.

Code availability

Molecular simulations were performed using the open source package LAMMPS, stable release 7 August 2019, available under https://www.lammps.org/. Post-processing was performed in Python using our open source toolbox MAICoS (https://gitlab.com/maicos-devel/maicos/).

References

  1. Bocquet, L. & Charlaix, E. Nanofluidics, from bulk to interfaces. Chem. Soc. Rev. 39, 1073–1095 (2010).

    Article  CAS  Google Scholar 

  2. Schoch, R. B., Han, J. & Renaud, P. Transport phenomena in nanofluidics. Rev. Mod. Phys. 80, 839–883 (2008).

    Article  CAS  Google Scholar 

  3. Bazant, M. Z., Storey, B. D. & Kornyshev, A. A. Double layer in ionic liquids: overscreening versus crowding. Phys. Rev. Lett. 106, 046102 (2011).

    Article  Google Scholar 

  4. Smith, A. M., Lee, A. A. & Perkin, S. The electrostatic screening length in concentrated electrolytes increases with concentration. J. Phys. Chem. Lett. 7, 2157–2163 (2016).

    Article  CAS  Google Scholar 

  5. Lainé, A., Niguès, A., Bocquet, L. & Siria, A. Nanotribology of ionic liquids: transition to yielding response in nanometric confinement with metallic surfaces. Phys. Rev. X 10, 011068 (2020).

    Google Scholar 

  6. Fedorov, M. V. & Kornyshev, A. A. Ionic liquids at electrified interfaces. Chem. Rev. 114, 2978–3036 (2014).

    Article  CAS  Google Scholar 

  7. Kaiser, V. et al. Electrostatic interactions between ions near Thomas–Fermi substrates and the surface energy of ionic crystals at imperfect metals. Faraday Discuss. 199, 129–158 (2017).

    Article  CAS  Google Scholar 

  8. Dufils, T., Scalfi, L., Rotenberg, B. & Salanne, M. A semiclassical Thomas–Fermi model to tune the metallicity of electrodes in molecular simulations. J. Chem. Phys. 153, 174704 (2019).

    Google Scholar 

  9. Newns, D. M. Fermi–Thomas response of a metal surface to an external point charge. J. Chem. Phys. 50, 4572–4575 (1969).

    Article  CAS  Google Scholar 

  10. Inkson, J. C. Many-body effect at metal-semiconductor junctions. II. The self energy and band structure distortion. J. Phys. C 6, 1350–1362 (1973).

    Article  CAS  Google Scholar 

  11. Kornyshev, A. A., Rubinshtein, A. I. & Vorotyntsev, M. A. Image potential near a dielectric–plasma-like medium interface. Phys. Status Solidi B 84, 125–132 (1977).

    Article  CAS  Google Scholar 

  12. Luque, N. B. & Schmickler, W. The electric double layer on graphite. Electrochim. Acta 71, 82–85 (2012).

    Article  CAS  Google Scholar 

  13. Kornyshev, A. A., Luque, N. B. & Schmickler, W. Differential capacitance of ionic liquid interface with graphite: the story of two double layers. J. Solid State Electrochem. 18, 1345–1349 (2014).

    Article  CAS  Google Scholar 

  14. Netz, R. R. Debye–Hückel theory for interfacial geometries. Phys. Rev. E 60, 3174–3182 (1999).

    Article  CAS  Google Scholar 

  15. Lee, A. A. & Perkin, S. Ion–image interactions and phase transition at electrolyte–metal Interfaces. J. Phys. Chem. Lett. 7, 2753–2757 (2016).

    Article  CAS  Google Scholar 

  16. Bedrov, D. et al. Molecular dynamics simulations of ionic liquids and electrolytes using polarizable force fields. Chem. Rev. 119, 7940–7995 (2019).

    Article  CAS  Google Scholar 

  17. Breitsprecher, K., Szuttor, K. & Holm, C. Electrode models for ionic liquid-based capacitors. J. Phys. Chem. C 119, 22445–22451 (2015).

    Article  CAS  Google Scholar 

  18. Comtet, J. et al. Nanoscale capillary freezing of ionic liquids confined between metallic interfaces and the role of electronic screening. Nat. Mater. 16, 634–639 (2017).

    Article  CAS  Google Scholar 

  19. Ashcroft, N. W. & Mermin, N. D. Solid State Physics (Holt, Rinehart and Winston, 1976).

    Google Scholar 

  20. dos Santos, A. P., Girotto, M. & Levin, Y. Simulations of Coulomb systems confined by polarizable surfaces using periodic Green functions. J. Chem. Phys. 147, 184105 (2017).

    Article  Google Scholar 

  21. Siepmann, J. I. & Sprik, M. Influence of surface topology and electrostatic potential on water/electrode systems. J. Chem. Phys. 102, 511–524 (1995).

    Article  CAS  Google Scholar 

  22. Reed, S. K., Lanning, O. J. & Madden, P. A. Electrochemical interface between an ionic liquid and a model metallic electrode. J. Chem. Phys. 126, 084704 (2007).

    Article  Google Scholar 

  23. Tyagi, S. et al. An iterative, fast, linear-scaling method for computing induced charges on arbitrary dielectric boundaries. J. Chem. Phys. 132, 154112 (2010).

    Article  Google Scholar 

  24. Arnold, A. et al. Efficient algorithms for electrostatic interactions including dielectric contrasts. Entropy 15, 4569–4588 (2013).

    Article  Google Scholar 

  25. Nguyen, T. D., Li, H., Bagchi, D., Solis, F. J. & Olvera de la Cruz, M. Incorporating surface polarization effects into large-scale coarse-grained molecular dynamics simulation. Computer Phys. Commun. 241, 80–91 (2019).

    Article  CAS  Google Scholar 

  26. Torrie, G. M. & Valleau, J. P. Double layer structure at the interface between two immiscible electrolyte solutions. J. Electroanal. Chem. Interfacial Electrochem. 206, 69–79 (1986).

    Article  CAS  Google Scholar 

  27. Kornyshev, A. A. & Vorotyntsev, M. A. Nonlocal electrostatic approach to the double layer and adsorption at the electrode–electrolyte interface. Surf. Sci. 101, 23–48 (1980).

    Article  CAS  Google Scholar 

  28. Vorotyntsev, M. A. in Modern Aspects of Electrochemistry Vol. 17 (eds Bockris, J. O., Conway, B. E. & White, R. E.) 131–222 (Springer, 1986).

  29. Kornyshev, A. A. & Vorotyntsev, M. A. Electrostatic interaction at the metal/dielectric interface. Sov. Phys. JETP 51, 509–513 (1980).

    Google Scholar 

  30. Vorotyntsev, M. A. in The Chemical Physics of Solvation. Part C: Solvation Phenomena in Specific Physical, Chemical and Biological Systems (eds Dogonadze, R. R., Kalman, E., Kornyshev, A. A. & Ulstrup, J.) 401–432 (Elsevier, 1988).

  31. Kornyshev, A. A. & Schmickler, W. On the coverage dependence of the partial charge transfer coefficient. J. Electroanalytical Chem. Interfacial Electrochem. 202, 1–21 (1986).

    Article  CAS  Google Scholar 

  32. Vorotyntsev, M., Kornyshev, A. & Rubinshtein, A. Possible mechanisms of controlling ionic interaction at the electrode–solution interface. Sov. Electrochem. 16, 65–67 (1980).

    Google Scholar 

  33. Kornyshev, A. A. Metal electrons in the double layer theory. Electrochim. Acta 34, 1829–1847 (1989).

    Article  CAS  Google Scholar 

  34. Gerischer, H. An interpretation of the double layer capacity of graphite electrodes in relation to the density of states at the Fermi level. J. Phys. Chem. 89, 4249–4251 (1985).

    Article  CAS  Google Scholar 

  35. Gerischer, H., McIntyre, R., Scherson, D. & Storck, W. Density of the electronic states of graphite: derivation from differential capacitance measurements. J. Phys. Chem. 91, 1930–1935 (1987).

    Article  CAS  Google Scholar 

  36. Kondrat, S. & Kornyshev, A. Superionic state in double-layer capacitors with nanoporous electrodes. J. Phys. Condens. Matter 23, 022201 (2010).

    Article  Google Scholar 

  37. Li, Z., Mendez-Morales, T. & Salanne, M. Computer simulation studies of nanoporous carbon-based electrochemical capacitors. Curr. Opin. Electrochem. 9, 81–86 (2018).

    Article  Google Scholar 

  38. Rochester, C. C., Lee, A. A., Pruessner, G. & Kornyshev, A. A. Interionic interactions in conducting nanoconfinement. ChemPhysChem 14, 4121–4125 (2013).

    Article  CAS  Google Scholar 

  39. Mohammadzadeh, L. et al. On the energetics of ions in carbon and gold nanotubes. ChemPhysChem 17, 78–85 (2016).

    Article  CAS  Google Scholar 

  40. Bi, S. et al. Minimizing the electrosorption of water from humid ionic liquids on electrodes. Nat. Commun. 9, 5222 (2018).

    Article  Google Scholar 

  41. Anwar, J., Frenkel, D. & Noro, M. G. Calculation of the melting point of NaCl by molecular simulation. J. Chem. Phys. 118, 728–735 (2002).

    Article  Google Scholar 

  42. Nijmeijer, M. J. P., Bruin, C., Bakker, A. F. & van Leeuwen, J. M. J. Wetting and drying of an inert wall by a fluid in a molecular-dynamics simulation. Phys. Rev. A 42, 6052 (1990).

    Article  CAS  Google Scholar 

  43. de Gennes, P. G. Wetting: statics and dynamics. Rev. Mod. Phys. 57, 827–863 (1985).

    Article  Google Scholar 

  44. Rowlinson, J. S. & Widom, B. Molecular Theory of Capillarity (Clarendon Press, 1989).

  45. Bonn, D., Eggers, J., Indekeu, J., Meunier, J. & Rolley, E. Wetting and spreading. Rev. Mod. Phys. 81, 739–805 (2009).

    Article  CAS  Google Scholar 

  46. Evans, R., Stewart, M. C. & Wilding, N. B. A unified description of hydrophilic and superhydrophobic surfaces in terms of the wetting and drying transitions of liquids. Proc. Natl Acad. Sci. USA 116, 23901–23908 (2019).

    Article  CAS  Google Scholar 

  47. Damaskin, B. Adsorption of Organic Compounds on Electrodes (Springer, 2012).

  48. Plimpton, S. Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  49. Yeh, I.-C. & Berkowitz, M. L. Ewald summation for systems with slab geometry. J. Chem. Phys. 111, 3155–3162 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge V. Kaiser for his help with the TF model and computation time through CIMENT infrastructure (Rhône-Alpes CPER07_13 CIRA) and the Equip@Meso project (ANR-10-EQPX-29-01). We also acknowledge funding from the ANR project TAMTAM (ANR-15-CE08-0008-01). A.S. acknowledges funding from the DFG under Germany’s Excellence Strategy—EXC 2075–390740016 and SFB 1313 (project no. 327154368) and support by the Stuttgart Center for Simulation Science (SimTech).

Author information

Authors and Affiliations

Authors

Contributions

B.C., L.B. and A.S. conceived the research. A.S. carried out the molecular simulations with support from D.J. A.S., B.C. and L.B. analysed the data. A.S. and B.C. wrote the paper with input from all authors.

Corresponding author

Correspondence to Benoit Coasne.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review informationNature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–13, Table 1, analytical treatment of the TF model and further detail on methods.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schlaich, A., Jin, D., Bocquet, L. et al. Electronic screening using a virtual Thomas–Fermi fluid for predicting wetting and phase transitions of ionic liquids at metal surfaces. Nat. Mater. 21, 237–245 (2022). https://doi.org/10.1038/s41563-021-01121-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01121-0

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing