Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

3D-printed silica with nanoscale resolution


Fabricating inorganic materials with designed three-dimensional nanostructures is an exciting yet challenging area of research and industrial application. Here, we develop an approach to 3D print high-quality nanostructures of silica with sub-200 nm resolution and with the flexible capability of rare-earth element doping. The printed SiO2 can be either amorphous glass or polycrystalline cristobalite controlled by the sintering process. The 3D-printed nanostructures demonstrate attractive optical properties. For instance, the fabricated micro-toroid optical resonators can reach quality factors (Q) of over 104. Moreover, and importantly for optical applications, doping and codoping of rare-earth salts such as Er3+, Tm3+, Yb3+, Eu3+ and Nd3+ can be directly implemented in the printed SiO2 structures, showing strong photoluminescence at the desired wavelengths. This technique shows the potential for building integrated microphotonics with silica via 3D printing.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Process of 2PP-enabled 3D printing of silica.
Fig. 2: Microstructures of silica printed using the proposed 2PP-enabled AM technique.
Fig. 3: Optical applications of printed silica resonator.

Similar content being viewed by others

Data availability

The data that support the findings of this study are available from the corresponding authors upon reasonable request. Source data are provided with this paper.


  1. Van Zant, P. Microchip Fabrication (McGraw-Hill Education, 2004).

    Google Scholar 

  2. Fortunato, E., Barquinha, P. & Martins, R. Oxide semiconductor thin-film transistors: a review of recent advances. Adv. Mater. 24, 2945–2986 (2012).

    Article  CAS  Google Scholar 

  3. Hsu, T. R. MEMS and Microsystems: Design, Manufacture, and Nanoscale Engineering (John Wiley & Sons, 2008).

    Google Scholar 

  4. Rossi, C. et al. Nanoenergetic materials for MEMS: a review. J. Microelectromech. Syst. 16, 919–931 (2007).

    Article  CAS  Google Scholar 

  5. Collot, L., Lefevre-Seguin, V., Brune, M., Raimond, J. M. & Haroche, S. Very high-Q whispering-gallery mode resonances observed on fused silica microspheres. EPL 23, 327–334 (1993).

    Article  CAS  Google Scholar 

  6. Okamoto, K. Progress and technical challenge for planar waveguide devices: silica and silicon waveguides. Laser Photonics Rev. 6, 14–23 (2012).

    Article  CAS  Google Scholar 

  7. Deal, B. E. & Grove, A. S. General relationship for the thermal oxidation of silicon. J. Appl. Phys. 36, 3770–3778 (1965).

    Article  CAS  Google Scholar 

  8. Inoue, K., Michimori, M., Okuyama, M. & Hamakawa, Y. Low temperature growth of SiO2 thin film by double-excitation photo-CVD. Jpn. J. Appl. Phys. 26, 805–811 (1987).

    Article  CAS  Google Scholar 

  9. Quirk, M. & Serda, J. Semiconductor Manufacturing Technology (Prentice Hall, 2001).

    Google Scholar 

  10. Gokan, H., Esho, S. & Ohnishi, Y. Dry etch resistance of organic materials. J. Electrochem. Soc. 130, 143–146 (1983).

    Article  CAS  Google Scholar 

  11. Van der Heide, P. A. M., Baan Hofman, M. J. & Ronde, H. J. Etching of thin SiO2 layers using wet HF gas. J. Vac. Sci. Technol. A 7, 1719–1723 (1989).

    Article  Google Scholar 

  12. Monk, D. J., Soane, D. S. & Howe, R. T. A review of the chemical reaction mechanism and kinetics for hydrofluoric acid etching of silicon dioxide for surface micromachining applications. Thin Solid Films 232, 1–12 (1993).

    Article  CAS  Google Scholar 

  13. Wong, K. V. & Hernandez, A. A review of additive manufacturing. ISRN Mech. Eng. 2012, 208760 (2012).

    Article  Google Scholar 

  14. Mueller, B. Additive manufacturing technologies—rapid prototyping to direct digital manufacturing. Assem. Autom. (2012).

  15. Camposeo, A., Persano, L., Farsari, M. & Pisignano, D. Additive manufacturing: applications and directions in photonics and optoelectronics. Adv. Opt. Mater. 7, 1800419 (2019).

    Article  Google Scholar 

  16. Chia, H. N. & Wu, B. M. Recent advances in 3D printing of biomaterials. J. Med. Biol. Eng. 9, 4 (2015).

  17. Skylar-Scott, M. A., Gunasekaran, S. & Lewis, J. A. Laser-assisted direct ink writing of planar and 3D metal architectures. Proc. Natl Acad. Sci. USA 113, 6137–6142 (2016).

    Article  CAS  Google Scholar 

  18. Hinton, T. J., Hudson, A., Pusch, K., Lee, A. & Feinberg, A. W. 3D printing PDMS elastomer in a hydrophilic support bath via freeform reversible embedding. ACS Biomater. Sci. Eng. 2, 1781–1786 (2016).

    Article  CAS  Google Scholar 

  19. Tan, Y. et al. 3D printing facilitated scaffold-free tissue unit fabrication. Biofabrication 6, 024111 (2014).

    Article  CAS  Google Scholar 

  20. Kotz, F. et al. Three-dimensional printing of transparent fused silica glass. Nature 544, 337–339 (2017).

    Article  CAS  Google Scholar 

  21. Lan, P. X., Lee, J. W., Seol, Y. J. & Cho, D. W. Development of 3D PPF/DEF scaffolds using micro-stereolithography and surface modification. J. Mater. Sci. Mater. Med. 20, 271–279 (2009).

    Article  CAS  Google Scholar 

  22. Lopes, A. J., MacDonald, E. & Wicker, R. B. Integrating stereolithography and direct print technologies for 3D structural electronics fabrication. Rapid Prototyp. J. 18, 129–143 (2012).

    Article  Google Scholar 

  23. Xing, J. F., Zheng, M. L. & Duan, X. M. Two-photon polymerization microfabrication of hydrogels: an advanced 3D printing technology for tissue engineering and drug delivery. Chem. Soc. Rev. 44, 5031–5039 (2015).

    Article  CAS  Google Scholar 

  24. Tan, D. et al. Reduction in feature size of two-photon polymerization using SCR500. Appl. Phys. Lett. 90, 071106 (2007).

    Article  Google Scholar 

  25. Juodkazis, S., Mizeikis, V., Seet, K. K., Miwa, M. & Misawa, H. Two-photon lithography of nanorods in SU-8 photoresist. Nanotechnology 16, 846–849 (2005).

    Article  CAS  Google Scholar 

  26. Ovsianikov, A. et al. Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. ACS Nano 2, 2257–2262 (2008).

    Article  CAS  Google Scholar 

  27. Brigo, L. et al. 3D nanofabrication of SiOC ceramic structures. Adv. Sci. 5, 1800937 (2018).

    Article  Google Scholar 

  28. Schmidt, J. et al. Multiscale ceramic components from preceramic polymers by hybridization of vat polymerization-based technologies. Addit. Manuf. 30, 100913 (2019).

    CAS  Google Scholar 

  29. Chandrappan, J. et al. Doping silica beyond limits with laser plasma for active photonic materials. Opt. Mater. Express 5, 2849–2861 (2015).

    Article  CAS  Google Scholar 

  30. El-Ganainy, R., Khajavikhan, M., Christodoulides, D. N. & Ozdemir, S. K. The dawn of non-Hermitian optics. Commun. Phys. 2, 37 (2019).

    Article  Google Scholar 

  31. Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    Article  CAS  Google Scholar 

  32. Mohanty, S. R. A relationship between heat conductivity and viscosity of liquids. Nature 168, 42 (1951).

    Article  CAS  Google Scholar 

  33. Lin, B. & Zhou, S. Poly (ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings. Prog. Org. Coat. 106, 145–154 (2017).

    Article  CAS  Google Scholar 

  34. Kotz, F. et al. Two-photon polymerization of nanocomposites for the fabrication of transparent fused silica glass microstructures. Adv. Mater. 33, 2006341 (2021).

    Article  CAS  Google Scholar 

  35. Farsari, M. & Chichkov, B. N. Two-photon fabrication. Nat. Photon. 3, 450–452 (2009).

    Article  CAS  Google Scholar 

  36. Hossein-Zadeh, M. & Vahala, K. J. Free ultra-high-Q microtoroid: a tool for designing photonic devices. Opt. Express 15, 166–175 (2007).

    Article  Google Scholar 

  37. Liu, Z. P. et al. Direct laser writing of whispering gallery microcavities by two-photon polymerization. Appl. Phys. Lett. 97, 211105 (2010).

    Article  Google Scholar 

  38. Moore, D. G., Barbera, L., Masania, K. & Studart, A. R. Three-dimensional printing of multicomponent glasses using phase-separating resins. Nat. Mater. 19, 212–217 (2020).

    Article  CAS  Google Scholar 

  39. Nguyen, D. T. et al. 3D-printed transparent glass. Adv. Mater. 29, 1701181 (2017).

    Article  Google Scholar 

  40. Grossmann, T. et al. Direct laser writing for active and passive high-Q polymer microdisks on silicon. Opt. Express 19, 11451–11456 (2011).

    Article  CAS  Google Scholar 

  41. Gan, Z., Cao, Y., Evans, R. A. & Gu, M. Three-dimensional deep sub-diffraction optical beam lithography with 9 nm feature size. Nat. Commun. 4, 2061 (2013).

    Article  Google Scholar 

  42. Richman, E. K., Kang, C. B., Brezesinski, T. & Tolbert, S. H. Ordered mesoporous silicon through magnesium reduction of polymer templated silica thin films. Nano Lett. 8, 3075–3079 (2008).

    Article  CAS  Google Scholar 

Download references


X.W., B.Z., W.W., H.G., Q.F., C.N. and J.L. gratefully acknowledge the financial support by the Welch Foundation grant C-1716. J.B. gratefully acknowledges the financial support by the Welch Foundation grant E-1728. This work was conducted in part using resources of the Shared Equipment Authority at Rice University. We thank J. Li at the Shared Equipment Authority of Rice University for help with the SAXS experiments. We also thank X-M. Lin at Argonne National Laboratory for help with Fourier transform infrared spectroscopy experiments.

Author information

Authors and Affiliations



X.W., J.L. and P.M.A. designed the experiment; X.W. and B.Z. performed the nanocomposite ink preparation and 2PP printing; X.W., B.Z., W.W., H.G., G.G., Y.Z., Q.F., C.N. and X.Z. contributed to sample characterization; F.Y. and J.T.R. helped with the optical resonator test; and S.Y. and J.B. helped with the photoluminescence measurements.

Corresponding authors

Correspondence to Weipeng Wang, Jacob T. Robinson, Pulickel M. Ajayan or Jun Lou.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Paolo Colombo, Kunal Masania and Bastian Rapp for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–6 and Discussion.

Source data

Source Data Fig. 3

Source data for curves in Fig. 3.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, X., Zhang, B., Wang, W. et al. 3D-printed silica with nanoscale resolution. Nat. Mater. 20, 1506–1511 (2021).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing