Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Giant magnetoelastic effect in soft systems for bioelectronics


The magnetoelastic effect—the variation of the magnetic properties of a material under mechanical stress—is usually observed in rigid alloys, whose mechanical modulus is significantly different from that of human tissues, thus limiting their use in bioelectronics applications. Here, we observed a giant magnetoelastic effect in a soft system based on micromagnets dispersed in a silicone matrix, reaching a magnetomechanical coupling factor indicating up to four times more enhancement than in rigid counterparts. The results are interpreted using a wavy chain model, showing how mechanical stress changes the micromagnets’ spacing and dipole alignment, thus altering the magnetic field generated by the composite. Combined with liquid-metal coils patterned on polydimethylsiloxane working as a magnetic induction layer, the soft magnetoelastic composite is used for stretchable and water-resistant magnetoelastic generators adhering conformably to human skin. Such devices can be used as wearable or implantable power generators and biomedical sensors, opening alternative avenues for human-body-centred applications.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Giant magnetoelastic effect in a soft system.
Fig. 2: Standard evaluation of the combining effect of the giant magnetoelastic effect and magnetic induction for biomechanical-to-electrical conversion.
Fig. 3: Wearable and implantable power generation.
Fig. 4: Monitoring of the human cardiovascular system.

Data availability

Source data are provided with this paper. Other data generated or analysed during this study are included in the Supplementary Information. Further data are available from the corresponding author upon request.


  1. 1.

    Fleming, W. J. New automotive sensors—a review. IEEE Sens. J. 8, 1900–1921 (2008).

    Article  Google Scholar 

  2. 2.

    Eem, S., Jung, H. & Koo, J. Application of MR elastomers for improving seismic protection of base-isolated structures. IEEE Trans. Magn. 47, 2901–2904 (2011).

    Article  Google Scholar 

  3. 3.

    Deng, Z. & Dapino, M. J. Review of magnetostrictive materials for structural vibration control. Smart Mater. Struct. 27, 113001 (2018).

    Article  Google Scholar 

  4. 4.

    Davino, D., Giustiniani, A. & Visone, C. The piezo-magnetic parameters of Terfenol-D: an experimental viewpoint. Phys. B Condens. Matter 407, 1427–1432 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Ausanio, G. et al. Magnetoelastic sensor application in civil buildings monitoring. Sens. Actuators A Phys. 123–124, 290–295 (2005).

    Article  Google Scholar 

  6. 6.

    Su, Q., Morillo, J., Wen, Y. & Wuttig, M. Young’s modulus of amorphous Terfenol‐D thin films. J. Appl. Phys. 80, 3604–3606 (1996).

    CAS  Article  Google Scholar 

  7. 7.

    Datta, S., Atulasimha, J., Mudivarthi, C. & Flatau, A. B. Stress and magnetic field-dependent Young’s modulus in single crystal iron–gallium alloys. J. Magn. Magn. Mater. 322, 2135–2144 (2010).

    CAS  Article  Google Scholar 

  8. 8.

    Xu, S., Jayaraman, A. & Rogers, J. A. Skin sensors are the future of health care. Nature 571, 319–321 (2019).

    CAS  Article  Google Scholar 

  9. 9.

    Chen, J. & Wang, Z. L. Reviving vibration energy harvesting and self-powered sensing by a triboelectric nanogenerator. Joule 1, 480–521 (2017).

    CAS  Article  Google Scholar 

  10. 10.

    Li, Q., Naing, V. & Donelan, J. M. Development of a biomechanical energy harvester. J. Neuroeng. Rehabil. 6, 22 (2009).

    Article  Google Scholar 

  11. 11.

    Dharmasena, R. D. I. G., Deane, J. H. B. & Silva, S. R. P. Nature of power generation and output optimization criteria for triboelectric nanogenerators. Adv. Energy Mater. 8, 1802190 (2018).

    Article  Google Scholar 

  12. 12.

    Yang, W. et al. All-fiber tribo-ferroelectric synergistic electronics with high thermal-moisture stability and comfortability. Nat. Commun. 10, 5541 (2019).

    CAS  Article  Google Scholar 

  13. 13.

    Wang, Z. L. Triboelectric nanogenerators as new energy technology and self-powered sensors – principles, problems and perspectives. Faraday Discuss. 176, 447–458 (2014).

    CAS  Article  Google Scholar 

  14. 14.

    Stokes, J. Man/System Requirements for Weightless Environments (NASA/Marshall Space Fight Center, 1976).

  15. 15.

    Deng, H. X. & Gong, X. L. Adaptive tuned vibration absorber based on magnetorheological elastomer. J. Intell. Mater. Syst. Struct. 18, 1205–1210 (2007).

    Article  Google Scholar 

  16. 16.

    Liu, K. & Liu, J. The damped dynamic vibration absorbers: revisited and new result. J. Sound Vib. 284, 1181–1189 (2005).

    Article  Google Scholar 

  17. 17.

    Kim, Y., Yuk, H., Zhao, R., Chester, S. A. & Zhao, X. Printing ferromagnetic domains for untethered fast-transforming soft materials. Nature 558, 274–279 (2018).

    CAS  Article  Google Scholar 

  18. 18.

    Liu, J. A. C., Gillen, J. H., Mishra, S. R., Evans, B. A. & Tracy, J. B. Photothermally and magnetically controlled reconfiguration of polymer composites for soft robotics. Sci. Adv. 5, eaaw2897 (2019).

    CAS  Article  Google Scholar 

  19. 19.

    Guan, X., Dong, X. & Ou, J. Magnetostrictive effect of magnetorheological elastomer. J. Magn. Magn. Mater. 320, 158–163 (2008).

    CAS  Article  Google Scholar 

  20. 20.

    Zhou, G. Y. Shear properties of a magnetorheological elastomer. Smart Mater. Struct. 12, 139–146 (2003).

    Article  Google Scholar 

  21. 21.

    Pailler-Mattei, C., Bec, S. & Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng. Phys. 30, 599–606 (2008).

    CAS  Article  Google Scholar 

  22. 22.

    Agache, P. G., Monneur, C., Leveque, J. L. & De Rigal, J. Mechanical properties and Young’s modulus of human skin in vivo. Arch. Dermatol. 269, 221–232 (1980).

    CAS  Article  Google Scholar 

  23. 23.

    Kováčik, J. Correlation between Young’s modulus and porosity in porous materials. J. Mater. Sci. Lett. 18, 1007–1010 (1999).

    Article  Google Scholar 

  24. 24.

    Stolbov, O. V., Raikher, Y. L. & Balasoiu, M. Modelling of magnetodipolar striction in soft magnetic elastomers. Soft Matter 7, 8484–8487 (2011).

    CAS  Article  Google Scholar 

  25. 25.

    Diguet, G., Sebald, G., Nakano, M., Lallart, M. & Cavaillé, J.-Y. Magnetic particle chains embedded in elastic polymer matrix under pure transverse shear and energy conversion. J. Magn. Magn. Mater. 481, 39–49 (2019).

    CAS  Article  Google Scholar 

  26. 26.

    Deng, Z. Nonlinear Modeling and Characterization of the Villari Effect and Model-Guided Development of Magnetostrictive Energy Harvesters and Dampers. PhD dissertation, Ohio State Univ. (2015).

  27. 27.

    Liu, J., Jiang, C. & Xu, H. Giant magnetostrictive materials. Sci. China Technol. Sci. 55, 1319–1326 (2012).

    Article  Google Scholar 

  28. 28.

    Sheikh Amiri, M. et al. On the role of crystal and stress anisotropy in magnetic Barkhausen noise. J. Magn. Magn. Mater. 372, 16–22 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    Fan, F.-R., Tian, Z.-Q. & Wang, Z. L. Flexible triboelectric generator. Nano Energy 1, 328–334 (2012).

    CAS  Article  Google Scholar 

  30. 30.

    Gu, L. et al. Enhancing the current density of a piezoelectric nanogenerator using a three-dimensional intercalation electrode. Nat. Commun. 11, 1030 (2020).

    CAS  Article  Google Scholar 

  31. 31.

    Yang, R., Qin, Y., Li, C., Zhu, G. & Wang, Z. L. Converting biomechanical energy into electricity by a muscle-movement-driven nanogenerator. Nano Lett. 9, 1201–1205 (2009).

    CAS  Article  Google Scholar 

  32. 32.

    Dudem, B., Mule, A. R., Patnam, H. R. & Yu, J. S. Wearable and durable triboelectric nanogenerators via polyaniline coated cotton textiles as a movement sensor and self-powered system. Nano Energy 55, 305–315 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Wang, Z. L. On Maxwell’s displacement current for energy and sensors: the origin of nanogenerators. Mater. Today 20, 74–82 (2017).

    Article  Google Scholar 

  34. 34.

    Hinchet, R. et al. Transcutaneous ultrasound energy harvesting using capacitive triboelectric technology. Science 365, 491–494 (2019).

    CAS  Article  Google Scholar 

  35. 35.

    Marriott, B. M. Nutritional Needs in Hot Environments: Applications for Military Personnel in Field Operations (National Academies Press, 1993).

  36. 36.

    Zheng, Q. et al. In vivo self-powered wireless cardiac monitoring via implantable triboelectric nanogenerator. ACS Nano 10, 6510–6518 (2016).

    CAS  Article  Google Scholar 

  37. 37.

    Diguet, G., Sebald, G., Nakano, M., Lallart, M. & Cavaillé, J.-Y. Optimization of magneto-rheological elastomers for energy harvesting applications. Smart Mater. Struct. 29, 075017 (2020).

    CAS  Article  Google Scholar 

  38. 38.

    Diguet, G., Sebald, G., Nakano, M., Lallart, M. & Cavaillé, J.-Y. Analysis of magneto rheological elastomers for energy harvesting systems. Int. J. Appl. Electromagn. Mech. 64, 439–446 (2020).

    Article  Google Scholar 

Download references


We acknowledge the Henry Samueli School of Engineering and Applied Science and the Department of Bioengineering at the University of California, Los Angeles for the start-up support. J.C. also acknowledges the 2020 Okawa Foundation Research Grant and the 2021 Hellman Fellows Fund.

Author information




J.C. conceived the idea and guided the whole project. Y.Z., X.Z. and J.C. designed the experiment, analysed the data, drew the figures and composed the manuscript. J.X. contributed to the design of the integrated cardiovascular health monitoring system; Y.F. and G.C. contributed to the modelling analysis and made technical comments on the manuscript. Y.S., X.Z. and S.L. contributed to the biocompatibility test of the soft MEGs. All authors have seen the paper, agree to its content and approve the submission.

Corresponding author

Correspondence to Jun Chen.

Ethics declarations

Competing interests

A patent has been filed related to this work from the University of California, Los Angeles with US provisional patent application no. 63/176,651.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–50, Tables 1–3 and Notes 1–7.

Supplementary Video 1

The three-dimensional tomography of the giant magnetomechanical coupling layer.

Supplementary Video 2

Wirelessly measuring human pulse wave in a sweaty state.

Source data

Source Data Fig. 1

Source data for Fig. 1d–i.

Source Data Fig. 2

Source data for Fig. 2c–h.

Source Data Fig. 3

Source data for Fig. 3b–h,j.

Source Data Fig. 4

Source data for Fig. 4c,d.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhou, Y., Zhao, X., Xu, J. et al. Giant magnetoelastic effect in soft systems for bioelectronics. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing