Abstract
Experimental in vitro models that capture pathophysiological characteristics of human tumours are essential for basic and translational cancer biology. Here, we describe a fully synthetic hydrogel extracellular matrix designed to elicit key phenotypic traits of the pancreatic environment in culture. To enable the growth of normal and cancerous pancreatic organoids from genetically engineered murine models and human patients, essential adhesive cues were empirically defined and replicated in the hydrogel scaffold, revealing a functional role of laminin–integrin α3/α6 signalling in establishment and survival of pancreatic organoids. Altered tissue stiffness—a hallmark of pancreatic cancer—was recapitulated in culture by adjusting the hydrogel properties to engage mechano-sensing pathways and alter organoid growth. Pancreatic stromal cells were readily incorporated into the hydrogels and replicated phenotypic traits characteristic of the tumour environment in vivo. This model therefore recapitulates a pathologically remodelled tumour microenvironment for studies of normal and pancreatic cancer cells in vitro.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Modeling human neurodevelopmental diseases with brain organoids
Cell Regeneration Open Access 04 January 2022
Access options
Access Nature and 54 other Nature Portfolio journals
Get Nature+, our best-value online-access subscription
$29.99 per month
cancel any time
Subscribe to this journal
Receive 12 print issues and online access
$259.00 per year
only $21.58 per issue
Rent or buy this article
Get just this article for as long as you need it
$39.95
Prices may be subject to local taxes which are calculated during checkout





Data availability
All original source data are freely available. The mass spectrometry proteomics data have been deposited to the ProteomeXchange Consortium via the PRIDE69 partner repository with the following dataset identifiers: NP matrisome atlas (PXD022555 and 10.6019/PXD022555); IAC datasets (PXD022487 and 10.6019/PXD022487); cell-derived matrix datasets (PXD022509 and 10.6019/PXD022509); 3D PEG CBF-0.5 LC–MS (PXD022520 and 10.6019/PXD022520); Tumour Matrisome LC–MS (PXD022767 and 10.6019/PXD022767). Raw CyTOF data, IF images and AFM force curves as well as source data for all figures (Figs. 1–5 and Supplementary Figs. 1–28) have been deposited to https://zenodo.org/record/4664132.
Code availability
All original R scripts have been deposited to https://zenodo.org/record/4664132 and are freely available.
References
Egeblad, M., Nakasone, E. S. & Werb, Z. Tumors as organs: complex tissues that interface with the entire organism. Dev. Cell 18, 884–901 (2010).
Feig, C. et al. The pancreas cancer microenvironment. Clin. Cancer Res. 18, 4266–4276 (2012).
Sahai, E. et al. A framework for advancing our understanding of cancer-associated fibroblasts. Nat. Rev. Cancer 6, 174–186 (2020).
DeNardo, D. G. & Ruffell, B. Macrophages as regulators of tumour immunity and immunotherapy. Nat. Rev. Immunol. 7, 369–382 (2019).
Biankin, A. V. et al. Pancreatic cancer genomes reveal aberrations in axon guidance pathway genes. Nature 491, 399–405 (2012).
Miller, B. W. et al. Targeting the LOX/hypoxia axis reverses many of the features that make pancreatic cancer deadly: inhibition of LOX abrogates metastasis and enhances drug efficacy. EMBO Mol. Med. 7, 1063–1076 (2015).
Jiang, H. et al. Targeting focal adhesion kinase renders pancreatic cancers responsive to checkpoint immunotherapy. Nat. Med. 22, 851–860 (2016).
Shi, Y. et al. Targeting LIF-mediated paracrine interaction for pancreatic cancer therapy and monitoring. Nature 569, 131–135 (2019).
Sherman, M. H. et al. Vitamin D receptor-mediated stromal reprogramming suppresses pancreatitis and enhances pancreatic cancer therapy. Cell 159, 80–93 (2014).
Boj, S. F. et al. Organoid models of human and mouse ductal pancreatic cancer. Cell 160, 324–338 (2015).
Tuveson, D. & Clevers, H. Cancer modeling meets human organoid technology. Science 364, 952–955 (2019).
Drost, J. & Clevers, H. Organoids in cancer research. Nat. Rev. Cancer 18, 407–418 (2018).
Hughes, C. S., Postovit, L. M. & Lajoie, G. A. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10, 1886–1890 (2010).
Brassard, J. A. & Lutolf, M. P. Engineering stem cell self-organization to build better organoids. Stem Cell 24, 860–876 (2019).
Socovich, A. M. & Naba, A. The cancer matrisome: from comprehensive characterization to biomarker discovery. Semin. Cell Dev. Biol. 89, 157–166 (2019).
Cook, C. D. et al. Local remodeling of synthetic extracellular matrix microenvironments by co-cultured endometrial epithelial and stromal cells enables long-term dynamic physiological function. Integr. Biol. 9, 271–289 (2017).
Gjorevski, N. et al. Designer matrices for intestinal stem cell and organoid culture. Nature 539, 560–564 (2016).
Kratochvil, M. J. et al. Engineered materials for organoid systems. Nat. Rev. Mater. 4, 606–622 (2019).
Valdez, J. et al. On-demand dissolution of modular, synthetic extracellular matrix reveals local epithelial-stromal communication networks. Biomaterials 130, 90–103 (2017).
Naba, A., Clauser, K. R. & Hynes, R. O. Enrichment of extracellular matrix proteins from tissues and digestion into peptides for mass spectrometry analysis. J. Vis. Exp. 101, e53057 (2015).
Hingorani, S. R. et al. Trp53R172H and KrasG12D cooperate to promote chromosomal instability and widely metastatic pancreatic ductal adenocarcinoma in mice. Cancer Cell 7, 469–483 (2005).
Hruban, R. H. et al. Pathology of genetically engineered mouse models of pancreatic exocrine cancer: consensus report and recommendations. Cancer Res. 66, 95–196 (2006).
Schönhuber, N. et al. A next-generation dual-recombinase system for time- and host-specific targeting of pancreatic cancer. Nat. Med. 20, 1340–1347 (2014).
Naba, A. et al. The matrisome: in silico definition and in vivo characterization by proteomics of normal and tumor extracellular matrices. Mol. Cell Proteom. 11, M111.014647 (2012).
Tian, C. et al. Proteomic analyses of ECM during pancreatic ductal adenocarcinoma progression reveal different contributions by tumor and stromal cells. Proc. Natl Acad. Sci. USA 116, 19609–19618 (2019).
Horton, E. R. et al. Definition of a consensus integrin adhesome and its dynamics during adhesion complex assembly and disassembly. Nat. Cell Biol. 17, 1577–1587 (2015).
Humphries, J. D. Integrin ligands at a glance. J. Cell. Sci. 119, 3901–3903 (2006).
Hamidi, H. & Ivaska, J. Every step of the way: integrins in cancer progression and metastasis. Nat. Rev. Cancer 18, 533–548 (2018).
Jones, M. C. et al. Isolation of integrin-based adhesion complexes. Curr. Protoc. Cell Biol. 66, 9.8.1–9.8.15 (2015).
Robertson, J. et al. Defining the phospho-adhesome through the phosphoproteomic analysis of integrin signalling. Nat. Commun. 6, 6265 (2015).
Takizawa, M. et al. Mechanistic basis for the recognition of laminin-511 by α6β1 integrin. Sci. Adv. 3, e1701497 (2017).
Samarelli, A. V. et al. Neuroligin 1 induces blood vessel maturation by cooperating with the α6 integrin. J. Biol. Chem. 289, 19466–19476 (2014).
Aumailley, M., Timpl, R. & Sonnenberg, A. Antibody to integrin α6 subunit specifically inhibits cell-binding to laminin fragment 8. Exp. Cell Res. 188, 55–60 (1990).
Lee, S. P. et al. Sickle cell adhesion to laminin: potential role for the α5 chain. Blood 92, 2951–2958 (1998).
Hernandez-Gordillo, V. et al. Fully synthetic matrices for in vitro culture of primary human intestinal enteroids and endometrial organoids. Biomaterials 254, 120125 (2020).
Johnson, G. & Moore, S. W. Identification of a structural site on acetylcholinesterase that promotes neurite outgrowth and binds laminin-1 and collagen IV. Biochem. Biophys. Res. Commun. 319, 448–455 (2004).
Brown, A. et al. Engineering PEG-based hydrogels to foster efficient endothelial network formation in free-swelling and confined microenvironments. Biomaterials 243, 119921 (2020).
Knight, C. G. et al. The collagen-binding A-domains of integrins α1β1 and α2β1 recognize the same specific amino acid sequence, GFOGER, in native (triple-helical) collagens. J. Biol. Chem. 275, 35–40 (2000).
Kuhlman, W., Taniguchi, I., Griffith, L. G. & Mayes, A. M. Interplay between PEO tether length and ligand spacing governs cell spreading on RGD-modified PMMA-g-PEO comb copolymers. Biomacromolecules 8, 3206–3213 (2007).
Eble, J. A., Bruckner, P. & Mayer, U. Vipera lebetina venom contains two disintegrins inhibiting laminin-binding β1 integrins. J. Biol. Chem. 278, 26488–26496 (2003).
Cavaco, A. C. M. et al. The interaction between laminin-332 and α3β1 integrin determines differentiation and maintenance of CAFs, and supports invasion of pancreatic duct adenocarcinoma cells. Cancers 11, 14–20 (2019).
Gasmi, A. et al. Amino acid structure and characterization of a heterodimeric disintegrin from Vipera lebetina venom. Biochim. Biophys. Acta 1547, 51–56 (2001).
Arruda Macêdo, J. K., Fox, J. W. & de Souza Castro, M. Disintegrins from snake venoms and their applications in cancer research and therapy. Curr. Protein Pept. Sci. 16, 532–548 (2015).
Tiriac, H. et al. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov. 8, 1112–1129 (2018).
Levental, K. R. et al. Matrix crosslinking forces tumor progression by enhancing integrin signaling. Cell 139, 891–906 (2009).
Laklai, H. et al. Genotype tunes pancreatic ductal adenocarcinoma tissue tension to induce matricellular fibrosis and tumor progression. Nat. Med. 22, 497–505 (2016).
Rice, A. J. et al. Matrix stiffness induces epithelial–mesenchymal transition and promotes chemoresistance in pancreatic cancer cells. Oncogenesis 6, e352 (2019).
Rubiano, A. et al. Viscoelastic properties of human pancreatic tumors and in vitro constructs to mimic mechanical properties. Acta Biomaterialia 67, 331–340 (2018).
Panciera, T. et al. Reprogramming normal cells into tumour precursors requires ECM stiffness and oncogene-mediated changes of cell mechanical properties. Nat. Mater. 19, 797–806 (2020).
Öhlund, D. et al. Distinct populations of inflammatory fibroblasts and myofibroblasts in pancreatic cancer. J. Exp. Med. 214, 579–596 (2017).
Elyada, E. et al. Cross-species single-cell analysis of pancreatic ductal adenocarcinoma reveals antigen-presenting cancer-associated fibroblasts. Cancer Discov. 9, 1102–1123 (2019).
Wu, J. et al. Generation of a pancreatic cancer model using a Pdx1-Flp recombinase knock-in allele. PLoS ONE 12, e0184984 (2017).
Ouyang, H. et al. Immortal human pancreatic duct epithelial cell lines with near normal genotype and phenotype. Am. J. Pathol. 157, 1623–1631 (2010).
Furukawa, T. et al. Long-term culture and immortalization of epithelial cells from normal adult human pancreatic ducts transfected by the E6E7 gene of human papilloma virus 16. Am. J. Pathol. 148, 1763–1770 (1996).
Huch, M. et al. Unlimited in vitro expansion of adult bi-potent pancreas progenitors through the Lgr5/R-spondin axis. EMBO J. 32, 2708–2721 (2013).
Bankhead, P. et al. QuPath: open source software for digital pathology image analysis. Sci. Rep. 7, 16878 (2017).
Schindelin, J. et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9, 676–682 (2012).
Livak, K. J. & Schmittgen, T. D. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25, 402–408 (2001).
Qin, X. et al. Cell-type-specific signaling networks in heterocellular organoids. Nat. Methods 17, 335–342 (2020).
Durinck, S., Spellman, P. T., Birney, E. & Huber, W. Mapping identifiers for the integration of genomic datasets with the R/Bioconductor package biomaRt. Nat. Protoc. 4, 1184–1191 (2009).
Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional cancer genomics data. Cancer Discov. 2, 401–404 (2012).
Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the cBioPortal. Sci. Signal 6, pl1 (2013).
Naba, A. et al. The extracellular matrix: tools and insights for the ‘omics’ era. Matrix Biol. 49, 10–24 (2016).
Bult, C. J. et al. Mouse genome database (MGD) 2019. Nucleic Acids Res. 47, D801–D806 (2019).
Zhang, H., Meltzer, P. & Davis, S. RCircos: an R package for Circos 2D track plots. BMC Bioinformatics 14, 244–245 (2013).
Gu, Z., Gu, L., Eils, R., Schlesner, M. & Brors, B. Circlize implements and enhances circular visualization in R. Bioinformatics 30, 2811–2812 (2014).
Shannon, P. et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 13, 2498–2504 (2003).
Szklarczyk, D. et al. The STRING database in 2017: quality-controlled protein–protein association networks, made broadly accessible. Nucleic Acids Res. 45, D362–D368 (2017).
Pérez-Riverol, Y. et al. The PRIDE database and related tools and resources in 2019: improving support for quantification data. Nucleic Acids Res. 47, D442–D450 (2018).
Acknowledgements
This work was supported by Cancer Research UK Program grant no. C13329/A21671 (M.J.H., C.J.), Cancer Research UK Institute Awards A19258 (C.J.) and A17196 (J.P.M.), Experimental Medicine Programme Award A25236 (C.J. and J.P.M.), Rosetrees Trust grant no. M286 (C.J.), European Research Council Consolidator Award ERC-2017-COG 772577 (C.J.), National Science Foundation grant no. CBET-0939511 (L.G.G.), National Institutes of Health grants no. R01EB021908 and T32GM008334 (L.G.G.) and Defense Advanced Research Projects Agency grant no. W911NF-12-2-0039 (L.G.G.). J.A.E. is financially supported by the Deutsche Forschungsgemeinschaft (DFG grant no. SFB1009 project A09). We thank D. Liu, A. Thrasher, T. Roberts, B. Torok-Storb, I. Verma, D. Trono and T. Somervaille for kindly sharing plasmids, M.-S. Tsao (UHN) for HPDE H6c7 cells, M. Ball and E. Mckenzie at Manchester Institute of Biotechnology for sortase expression and purification, C. J. Tape at University College London for technical advice, K. Beattie for assistance at FingerPrints Proteomics Facility (University of Dundee), the Cancer Research UK Glasgow Centre (A25142), the Biological Service Unit facilities at CRUK BI and members of Systems Oncology Group at CRUK MI for constructive input.
Author information
Authors and Affiliations
Contributions
C.R.B., J.K., A. Brown, B.Y.L., J.D.H., D.L.S., L.G.G., M.J.H. and C.J. designed the research; C.R.B., J.K., A. Brown, A. Banyard, J.D.H., J.X., C.L., D.K., A.M., N.H., D.L.S., J.B., C.C. and B.Y.L. conducted experiments; C.R.B., J.K., A. Brown, A. Banyard and C.J. analysed data; A. Banyard, C.C., V.H.-G., L.S., J.A.E., B.S., X.Z., D.L.S., D.K., J.A., G.A. and C.H. provided technical support; J.P.M. maintained the genetically engineered murine models and provided murine samples; J.P.M., L.S., L.G.G., J.A.E. and B.S. provided reagents and cell lines; M.A.G., J.G., L.F. and D.A.O. helped with clinical sample collection; L.F. provided pathological support; C.R.B. and C.J. wrote the paper and C.J. and L.G.G. oversaw the project. J.X. contributed to this work while an employee at CRUK MI.
Corresponding authors
Ethics declarations
Competing interests
L.G.G. has patent application pending related to the hydrogel system. The rest of the authors have no competing interests.
Additional information
Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.
Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Supplementary information
Supplementary Information
Supplementary Figs. 1–28, Tables 1 and 2, Methods, legends for Supplementary Videos 1–15, uncropped blots and FACS gating strategy.
Supplementary Video 1
Time-lapse image series of KPC-1 PCCs adhering to laminin 511.
Supplementary Video 2
Time-lapse image series of KPC-1 PCCs adhering to a non-coated surface.
Supplementary Video 3
Time-lapse image series of KPC-1 PCCs adhering to laminin 511.
Supplementary Video 4
Time-lapse image series of KPC-1 PCCs adhering to laminin 521.
Supplementary Video 5
Time-lapse image series of KPC-1 PCCs adhering to a combination of laminin 511 and laminin 521.
Supplementary Video 6
Time-lapse image series of KPC-1 PCCs adhering to a combination of laminin 511, laminin 521 and FN.
Supplementary Video 7
Time-lapse image series of KPC-1 PCCs adhering to FN.
Supplementary Video 8
Time-lapse image series of KPC-1 PCCs adhering to collagen-1.
Supplementary Video 9
Time-lapse image series of KPC-1 PCCs adhering to a non-coated glass surface.
Supplementary Video 10
3D reconstruction of a representative mPDO from Supplementary Fig. 12d.
Supplementary Video 11
3D reconstruction of a representative mPDO from Supplementary Fig. 12e.
Supplementary Video 12
Maximum intensity projection (MIPs) videos of co-cultures from Supplementary Fig. 25.
Supplementary Video 13
Maximum intensity projection (MIPs) videos of co-cultures from Supplementary Fig. 25.
Supplementary Video 14
Maximum intensity projection (MIPs) videos of co-cultures from Supplementary Fig. 25.
Supplementary Video 15
Maximum intensity projection (MIPs) videos of co-cultures from Supplementary Fig. 25.
Rights and permissions
About this article
Cite this article
Below, C.R., Kelly, J., Brown, A. et al. A microenvironment-inspired synthetic three-dimensional model for pancreatic ductal adenocarcinoma organoids. Nat. Mater. 21, 110–119 (2022). https://doi.org/10.1038/s41563-021-01085-1
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1038/s41563-021-01085-1
This article is cited by
-
Biomaterial-based platforms for tumour tissue engineering
Nature Reviews Materials (2023)
-
Middle-out methods for spatiotemporal tissue engineering of organoids
Nature Reviews Bioengineering (2023)
-
Modeling human neurodevelopmental diseases with brain organoids
Cell Regeneration (2022)
-
Synthetic scaffold for pancreatic organoids
Nature Materials (2022)
-
Engineered hydrogels for mechanobiology
Nature Reviews Methods Primers (2022)