Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals


Chemical doping controls the electronic properties of organic semiconductors, but so far, doping protocols and mechanisms are less developed than in conventional semiconductors. Here we describe a unique, site-specific, n-type surface doping mechanism for single crystals of two benchmark organic semiconductors that produces dramatic improvement in electron transport and provides unprecedented evidence for doping-induced space charge. The surface doping chemistry specifically targets crystallographic step edges, which are known electron traps, simultaneously passivating the traps and releasing itinerant electrons. The effect on electron transport is profound: field-effect electron mobility increases by as much as a factor of ten, and its temperature-dependent behaviour switches from thermally activated to band-like. Our findings suggest new site-specific strategies to dope organic semiconductors that differ from the conventional redox chemistry of randomly distributed substitutional impurities. Critically, they also verify the presence of doping-induced electron atmospheres, confirming long-standing expectations for organic systems from conventional solid-state theory.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Chemical doping of Cl2-NDI and PDIF-CN2 single crystals by exposure to N-silane vapour.
Fig. 2: Impact of doping on n-type single crystal FET characteristics.
Fig. 3: Impact of doping on the temperature dependence of electron transport.
Fig. 4: AFM height and SKPM potential images of doped crystals.
Fig. 5: Spectroscopic evidence for doping and scheme of the dopant-induced space charge distribution.

Data availability

The experimental data that support the findings of this study are available online at


  1. 1.

    Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    CAS  Google Scholar 

  2. 2.

    Lussem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).

    CAS  Google Scholar 

  3. 3.

    Xu, Y. et al. Doping: a key enabler for organic transistors. Adv. Mater. 30, 1801830 (2018).

    Google Scholar 

  4. 4.

    Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    CAS  Google Scholar 

  5. 5.

    Lin, X. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nat. Mater. 16, 1209–1215 (2017).

    CAS  Google Scholar 

  6. 6.

    Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    CAS  Google Scholar 

  7. 7.

    Bolto, B. A., McNeill, R. & Weiss, D. E. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16, 1090–1103 (1963).

    CAS  Google Scholar 

  8. 8.

    Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).

    Google Scholar 

  9. 9.

    Baughman, R. H., Bredas, J. L., Chance, R. R., Elsenbaumer, R. L. & Shacklette, L. W. Structural basis for semiconducting and metallic polymer dopant systems. Chem. Rev. 82, 209–222 (1982).

    CAS  Google Scholar 

  10. 10.

    Garito, A. F. & Heeger, A. J. Design and synthesis of organic metals. Acc. Chem. Res. 7, 232–240 (1974).

    CAS  Google Scholar 

  11. 11.

    Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    CAS  Google Scholar 

  12. 12.

    Ferraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. Electron transfer in a new highly conducting donor–acceptor complex. J. Am. Chem. Soc. 95, 948–949 (1973).

    CAS  Google Scholar 

  13. 13.

    Bryce, M. R. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 20, 355–390 (1991).

    CAS  Google Scholar 

  14. 14.

    Huang, J. et al. Low-voltage organic electroluminescent devices using pin structures. Appl. Phys. Lett. 80, 139–141 (2002).

    CAS  Google Scholar 

  15. 15.

    Zhou, X. et al. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl. Phys. Lett. 78, 410–412 (2001).

    CAS  Google Scholar 

  16. 16.

    Calhoun, M. F., Sanchez, J., Olaya, D., Gershenson, M. E. & Podzorov, V. Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers. Nat. Mater. 7, 84–89 (2008).

    CAS  Google Scholar 

  17. 17.

    Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nat. Mater. 7, 574–580 (2008).

    CAS  Google Scholar 

  18. 18.

    Duong, D. T., Wang, C., Antono, E., Toney, M. F. & Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Org. Electron. 14, 1330–1336 (2013).

    CAS  Google Scholar 

  19. 19.

    Han, Y. et al. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors. npj Flex. Electron. 2, 11 (2018).

    Google Scholar 

  20. 20.

    Lu, G. et al. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013).

    Google Scholar 

  21. 21.

    Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Google Scholar 

  22. 22.

    He, T. et al. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 6, 5954 (2015).

    CAS  Google Scholar 

  23. 23.

    He, T. et al. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors. Nat. Commun. 9, 2141 (2018).

    Google Scholar 

  24. 24.

    Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004).

    CAS  Google Scholar 

  25. 25.

    Minder, N. A., Ono, S., Chen, Z., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    CAS  Google Scholar 

  26. 26.

    Russ, B. et al. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chem. Sci. 7, 1914–1919 (2016).

    CAS  Google Scholar 

  27. 27.

    Park, J. et al. Single-gate bandgap opening of bilayer graphene by dual molecular doping. Adv. Mater. 24, 407–411 (2012).

    CAS  Google Scholar 

  28. 28.

    Lee, B. H., Bazan, G. C. & Heeger, A. J. Doping-induced carrier density modulation in polymer field-effect transistors. Adv. Mater. 28, 57–62 (2016).

    CAS  Google Scholar 

  29. 29.

    Röger, C. & Würthner, F. Core-tetrasubstituted naphthalene diimides: synthesis, optical properties, and redox characteristics. J. Org. Chem. 72, 8070–8075 (2007).

    Google Scholar 

  30. 30.

    Kishore, R. S. K. et al. Ordered and oriented supramolecular n/p-heterojunction surface architectures: completion of the primary color collection. J. Am. Chem. Soc. 131, 11106–11116 (2009).

    CAS  Google Scholar 

  31. 31.

    Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    CAS  Google Scholar 

  32. 32.

    Kim, J. J. et al. Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals. ACS Appl. Mater. Interfaces 10, 26745–26751 (2018).

    CAS  Google Scholar 

  33. 33.

    Materials, D. et al. Simulation of temperature-dependent charge transport in organic semiconductors with various degrees of disorder. J. Chem. Theory Comput. 12, 3087–3096 (2016).

    Google Scholar 

  34. 34.

    Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    CAS  Google Scholar 

  35. 35.

    Mei, Y. et al. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps. Proc. Natl Acad. Sci. USA 114, 6739–E6748 (2017).

    Google Scholar 

  36. 36.

    Xie, H., Alves, H. & Morpurgo, A. F. Quantitative analysis of density-dependent transport in tetramethyltetraselenafulvalene single-crystal transistors: intrinsic properties and trapping. Phys. Rev. B. 80, 245305 (2009).

  37. 37.

    Zuo, G. et al. Molecular doping and trap filling in organic semiconductor host–guest systems. J. Phys. Chem. C. 121, 7767–7775 (2017).

    CAS  Google Scholar 

  38. 38.

    Ellison, D. J., Lee, B., Podzorov, V. & Frisbie, C. D. Surface potential mapping of SAM-functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502–507 (2011).

    CAS  Google Scholar 

  39. 39.

    Kleemann, H. et al. Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Org. Electron. 13, 58–65 (2012).

    CAS  Google Scholar 

  40. 40.

    Guha, S., Goodson, F. S., Corson, L. J. & Saha, S. Boundaries of anion/naphthalenediimide interactions: from anion−π interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134, 13679–13691 (2012).

    CAS  Google Scholar 

  41. 41.

    Chauhan, A. K. et al. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl. Phys. A 90, 581–589 (2007).

    Google Scholar 

  42. 42.

    Tello, M., Chiesa, M., Duffy, C. M. & Sirringhaus, H. Charge trapping in intergrain regions of pentacene thin film transistors. Adv. Funct. Mater. 18, 3907–3913 (2008).

    CAS  Google Scholar 

  43. 43.

    Winkler, S. et al. Probing the energy levels in hole-doped molecular semiconductors. Mater. Horiz. 2, 427–433 (2015).

    CAS  Google Scholar 

  44. 44.

    Lussem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Google Scholar 

  45. 45.

    Mendez, H. et al. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 6, 8560 (2015).

    CAS  Google Scholar 

  46. 46.

    Salzmann, I. et al. Intermolecular hybridization governs molecular electrical doping. Phys. Rev. Lett. 108, 035502 (2012).

    Google Scholar 

  47. 47.

    Sadewasser S. & Glatzel, S. Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization (Springer, 2018).

  48. 48.

    Somoza, A. M. & Palacios-Lidón, E. Localized charges in thin films by Kelvin probe force microscopy: from single to multiple charges. Phys. Rev. B. 101, 075432 (2020).

    CAS  Google Scholar 

  49. 49.

    Turek, N., Godey, S., Deresmes, D. & Mélin, T. Ring charging of a single silicon dangling bond imaged by noncontact atomic force microscopy. Phys. Rev. B. 102, 235433 (2020).

    CAS  Google Scholar 

  50. 50.

    Zhang, Q. et al. Measurement and manipulation of the charge state of an adsorbed oxygen adatom on the rutile TiO2(110)-1 × 1 surface by nc-AFM and KPFM. J. Am. Chem. Soc. 140, 15668–15674 (2018).

    CAS  Google Scholar 

  51. 51.

    Adachi, Y. et al. Elucidating the charge state of an Au nanocluster on the oxidized/reduced rutile TiO2 (110) surface using non-contact atomic force microscopy and Kelvin probe force microscopy. Nanoscale Adv. 2, 2371–2375 (2020).

    CAS  Google Scholar 

  52. 52.

    Oh, J. H. et al. High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv. Funct. Mater. 20, 2148–2156 (2010).

    CAS  Google Scholar 

Download references


This work was supported primarily by the MRSEC programme of the National Science Foundation (NSF) under grant no. DMR-2011401 (T.H.). C.D.F. also acknowledges partial support from grant no. NSF DMR-1806419 and the University of Minnesota (P.P.R. and Y.W.). Parts of this work were carried out in the College of Science and Engineering Characterization Facility, University of Minnesota, which has received capital equipment funding from the NSF through the UMN MRSEC programme under award no. DMR-2011401, and in the Minnesota Nano Center, which is supported by NSF through the National Nano Coordinated Infrastructure Network, under award no. ECCS-2025124. Parts of this work were also carried out at the Center for Nanosystems Chemistry at the Universität Würzburg, which has received funds from the Bavarian State Ministry of Science and Arts in the framework of the research programme ‘Solar Technologies Go Hybrid’ (F.W.). Some of the SKPM measurements were performed at Shandong University, supported by the National Natural Science Foundation of China grant no. 62074093 (T.H.). T.H. also acknowledges support from the Qilu Young Scholars Programme of Shandong University.

Author information




C.D.F. designed and guided the research programme. T.H. grew single crystals, fabricated the devices and performed measurements and analysis. M.S., R.R. and F.W. synthesized the Cl2-NDI materials, performed UV-vis near infrared spectroelectrochemistry and contributed to the scientific discussion of the results. P.P.R. and Y.W. provided theoretical support and contributed to the interpretation of the results. T.H. and C.D.F. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Tao He or C. Daniel Frisbie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Sasha Sadewasser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

He, T., Stolte, M., Wang, Y. et al. Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing