Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals

Abstract

Chemical doping controls the electronic properties of organic semiconductors, but so far, doping protocols and mechanisms are less developed than in conventional semiconductors. Here we describe a unique, site-specific, n-type surface doping mechanism for single crystals of two benchmark organic semiconductors that produces dramatic improvement in electron transport and provides unprecedented evidence for doping-induced space charge. The surface doping chemistry specifically targets crystallographic step edges, which are known electron traps, simultaneously passivating the traps and releasing itinerant electrons. The effect on electron transport is profound: field-effect electron mobility increases by as much as a factor of ten, and its temperature-dependent behaviour switches from thermally activated to band-like. Our findings suggest new site-specific strategies to dope organic semiconductors that differ from the conventional redox chemistry of randomly distributed substitutional impurities. Critically, they also verify the presence of doping-induced electron atmospheres, confirming long-standing expectations for organic systems from conventional solid-state theory.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Chemical doping of Cl2-NDI and PDIF-CN2 single crystals by exposure to N-silane vapour.
Fig. 2: Impact of doping on n-type single crystal FET characteristics.
Fig. 3: Impact of doping on the temperature dependence of electron transport.
Fig. 4: AFM height and SKPM potential images of doped crystals.
Fig. 5: Spectroscopic evidence for doping and scheme of the dopant-induced space charge distribution.

Similar content being viewed by others

Data availability

The experimental data that support the findings of this study are available online at https://doi.org/10.6084/m9.figshare.13602551.

References

  1. Walzer, K., Maennig, B., Pfeiffer, M. & Leo, K. Highly efficient organic devices based on electrically doped transport layers. Chem. Rev. 107, 1233–1271 (2007).

    Article  CAS  Google Scholar 

  2. Lussem, B. et al. Doped organic transistors. Chem. Rev. 116, 13714–13751 (2016).

    Article  CAS  Google Scholar 

  3. Xu, Y. et al. Doping: a key enabler for organic transistors. Adv. Mater. 30, 1801830 (2018).

    Article  CAS  Google Scholar 

  4. Kang, K. et al. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion. Nat. Mater. 15, 896–902 (2016).

    Article  CAS  Google Scholar 

  5. Lin, X. et al. Beating the thermodynamic limit with photo-activation of n-doping in organic semiconductors. Nat. Mater. 16, 1209–1215 (2017).

    Article  CAS  Google Scholar 

  6. Yamashita, Y. et al. Efficient molecular doping of polymeric semiconductors driven by anion exchange. Nature 572, 634–638 (2019).

    Article  CAS  Google Scholar 

  7. Bolto, B. A., McNeill, R. & Weiss, D. E. Electronic conduction in polymers. III. Electronic properties of polypyrrole. Aust. J. Chem. 16, 1090–1103 (1963).

    Article  CAS  Google Scholar 

  8. Shirakawa, H., Louis, E. J., MacDiarmid, A. G., Chiang, C. K. & Heeger, A. J. Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH)x. J. Chem. Soc. Chem. Commun. 16, 578–580 (1977).

    Article  Google Scholar 

  9. Baughman, R. H., Bredas, J. L., Chance, R. R., Elsenbaumer, R. L. & Shacklette, L. W. Structural basis for semiconducting and metallic polymer dopant systems. Chem. Rev. 82, 209–222 (1982).

    Article  CAS  Google Scholar 

  10. Garito, A. F. & Heeger, A. J. Design and synthesis of organic metals. Acc. Chem. Res. 7, 232–240 (1974).

    Article  CAS  Google Scholar 

  11. Chiang, C. K. et al. Electrical conductivity in doped polyacetylene. Phys. Rev. Lett. 39, 1098–1101 (1977).

    Article  CAS  Google Scholar 

  12. Ferraris, J., Cowan, D. O., Walatka, V. & Perlstein, J. H. Electron transfer in a new highly conducting donor–acceptor complex. J. Am. Chem. Soc. 95, 948–949 (1973).

    Article  CAS  Google Scholar 

  13. Bryce, M. R. Recent progress on conducting organic charge-transfer salts. Chem. Soc. Rev. 20, 355–390 (1991).

    Article  CAS  Google Scholar 

  14. Huang, J. et al. Low-voltage organic electroluminescent devices using pin structures. Appl. Phys. Lett. 80, 139–141 (2002).

    Article  CAS  Google Scholar 

  15. Zhou, X. et al. Very-low-operating-voltage organic light-emitting diodes using a p-doped amorphous hole injection layer. Appl. Phys. Lett. 78, 410–412 (2001).

    Article  CAS  Google Scholar 

  16. Calhoun, M. F., Sanchez, J., Olaya, D., Gershenson, M. E. & Podzorov, V. Electronic functionalization of the surface of organic semiconductors with self-assembled monolayers. Nat. Mater. 7, 84–89 (2008).

    Article  CAS  Google Scholar 

  17. Alves, H., Molinari, A. S., Xie, H. & Morpurgo, A. F. Metallic conduction at organic charge-transfer interfaces. Nat. Mater. 7, 574–580 (2008).

    Article  CAS  Google Scholar 

  18. Duong, D. T., Wang, C., Antono, E., Toney, M. F. & Salleo, A. The chemical and structural origin of efficient p-type doping in P3HT. Org. Electron. 14, 1330–1336 (2013).

    Article  CAS  Google Scholar 

  19. Han, Y. et al. Anion-induced N-doping of naphthalenediimide polymer semiconductor in organic thin-film transistors. npj Flex. Electron. 2, 11 (2018).

    Article  CAS  Google Scholar 

  20. Lu, G. et al. Moderate doping leads to high performance of semiconductor/insulator polymer blend transistors. Nat. Commun. 4, 1588 (2013).

    Article  CAS  Google Scholar 

  21. Olthof, S. et al. Ultralow doping in organic semiconductors: evidence of trap filling. Phys. Rev. Lett. 109, 176601 (2012).

    Article  CAS  Google Scholar 

  22. He, T. et al. Single-crystal field-effect transistors of new Cl2-NDI polymorph processed by sublimation in air. Nat. Commun. 6, 5954 (2015).

    Article  CAS  Google Scholar 

  23. He, T. et al. Crystal step edges can trap electrons on the surfaces of n-type organic semiconductors. Nat. Commun. 9, 2141 (2018).

    Article  CAS  Google Scholar 

  24. Jones, B. A. et al. High-mobility air-stable n-type semiconductors with processing versatility: dicyanoperylene-3,4:9,10-bis(dicarboximides). Angew. Chem. Int. Ed. 43, 6363–6366 (2004).

    Article  CAS  Google Scholar 

  25. Minder, N. A., Ono, S., Chen, Z., Facchetti, A. & Morpurgo, A. F. Band-like electron transport in organic transistors and implication of the molecular structure for performance optimization. Adv. Mater. 24, 503–508 (2012).

    Article  CAS  Google Scholar 

  26. Russ, B. et al. Tethered tertiary amines as solid-state n-type dopants for solution-processable organic semiconductors. Chem. Sci. 7, 1914–1919 (2016).

    Article  CAS  Google Scholar 

  27. Park, J. et al. Single-gate bandgap opening of bilayer graphene by dual molecular doping. Adv. Mater. 24, 407–411 (2012).

    Article  CAS  Google Scholar 

  28. Lee, B. H., Bazan, G. C. & Heeger, A. J. Doping-induced carrier density modulation in polymer field-effect transistors. Adv. Mater. 28, 57–62 (2016).

    Article  CAS  Google Scholar 

  29. Röger, C. & Würthner, F. Core-tetrasubstituted naphthalene diimides: synthesis, optical properties, and redox characteristics. J. Org. Chem. 72, 8070–8075 (2007).

    Article  CAS  Google Scholar 

  30. Kishore, R. S. K. et al. Ordered and oriented supramolecular n/p-heterojunction surface architectures: completion of the primary color collection. J. Am. Chem. Soc. 131, 11106–11116 (2009).

    Article  CAS  Google Scholar 

  31. Sundar, V. C. et al. Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303, 1644–1646 (2004).

    Article  CAS  Google Scholar 

  32. Kim, J. J. et al. Correlating crystal thickness, surface morphology, and charge transport in pristine and doped rubrene single crystals. ACS Appl. Mater. Interfaces 10, 26745–26751 (2018).

    Article  CAS  Google Scholar 

  33. Materials, D. et al. Simulation of temperature-dependent charge transport in organic semiconductors with various degrees of disorder. J. Chem. Theory Comput. 12, 3087–3096 (2016).

    Article  CAS  Google Scholar 

  34. Podzorov, V. et al. Intrinsic charge transport on the surface of organic semiconductors. Phys. Rev. Lett. 93, 086602 (2004).

    Article  CAS  Google Scholar 

  35. Mei, Y. et al. Crossover from band-like to thermally activated charge transport in organic transistors due to strain-induced traps. Proc. Natl Acad. Sci. USA 114, 6739–E6748 (2017).

    Article  CAS  Google Scholar 

  36. Xie, H., Alves, H. & Morpurgo, A. F. Quantitative analysis of density-dependent transport in tetramethyltetraselenafulvalene single-crystal transistors: intrinsic properties and trapping. Phys. Rev. B. 80, 245305 (2009).

  37. Zuo, G. et al. Molecular doping and trap filling in organic semiconductor host–guest systems. J. Phys. Chem. C. 121, 7767–7775 (2017).

    Article  CAS  Google Scholar 

  38. Ellison, D. J., Lee, B., Podzorov, V. & Frisbie, C. D. Surface potential mapping of SAM-functionalized organic semiconductors by Kelvin probe force microscopy. Adv. Mater. 23, 502–507 (2011).

    Article  CAS  Google Scholar 

  39. Kleemann, H. et al. Structural phase transition in pentacene caused by molecular doping and its effect on charge carrier mobility. Org. Electron. 13, 58–65 (2012).

    Article  CAS  Google Scholar 

  40. Guha, S., Goodson, F. S., Corson, L. J. & Saha, S. Boundaries of anion/naphthalenediimide interactions: from anion−π interactions to anion-induced charge-transfer and electron-transfer phenomena. J. Am. Chem. Soc. 134, 13679–13691 (2012).

    Article  CAS  Google Scholar 

  41. Chauhan, A. K. et al. Self-assembly of the 3-aminopropyltrimethoxysilane multilayers on Si and hysteretic current–voltage characteristics. Appl. Phys. A 90, 581–589 (2007).

    Article  CAS  Google Scholar 

  42. Tello, M., Chiesa, M., Duffy, C. M. & Sirringhaus, H. Charge trapping in intergrain regions of pentacene thin film transistors. Adv. Funct. Mater. 18, 3907–3913 (2008).

    Article  CAS  Google Scholar 

  43. Winkler, S. et al. Probing the energy levels in hole-doped molecular semiconductors. Mater. Horiz. 2, 427–433 (2015).

    Article  CAS  Google Scholar 

  44. Lussem, B. et al. Doped organic transistors operating in the inversion and depletion regime. Nat. Commun. 4, 2775 (2013).

    Article  CAS  Google Scholar 

  45. Mendez, H. et al. Charge-transfer crystallites as molecular electrical dopants. Nat. Commun. 6, 8560 (2015).

    Article  CAS  Google Scholar 

  46. Salzmann, I. et al. Intermolecular hybridization governs molecular electrical doping. Phys. Rev. Lett. 108, 035502 (2012).

    Article  CAS  Google Scholar 

  47. Sadewasser S. & Glatzel, S. Kelvin Probe Force Microscopy: From Single Charge Detection to Device Characterization (Springer, 2018).

  48. Somoza, A. M. & Palacios-Lidón, E. Localized charges in thin films by Kelvin probe force microscopy: from single to multiple charges. Phys. Rev. B. 101, 075432 (2020).

    Article  CAS  Google Scholar 

  49. Turek, N., Godey, S., Deresmes, D. & Mélin, T. Ring charging of a single silicon dangling bond imaged by noncontact atomic force microscopy. Phys. Rev. B. 102, 235433 (2020).

    Article  CAS  Google Scholar 

  50. Zhang, Q. et al. Measurement and manipulation of the charge state of an adsorbed oxygen adatom on the rutile TiO2(110)-1 × 1 surface by nc-AFM and KPFM. J. Am. Chem. Soc. 140, 15668–15674 (2018).

    Article  CAS  Google Scholar 

  51. Adachi, Y. et al. Elucidating the charge state of an Au nanocluster on the oxidized/reduced rutile TiO2 (110) surface using non-contact atomic force microscopy and Kelvin probe force microscopy. Nanoscale Adv. 2, 2371–2375 (2020).

    Article  CAS  Google Scholar 

  52. Oh, J. H. et al. High-performance air-stable n-type organic transistors based on core-chlorinated naphthalene tetracarboxylic diimides. Adv. Funct. Mater. 20, 2148–2156 (2010).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported primarily by the MRSEC programme of the National Science Foundation (NSF) under grant no. DMR-2011401 (T.H.). C.D.F. also acknowledges partial support from grant no. NSF DMR-1806419 and the University of Minnesota (P.P.R. and Y.W.). Parts of this work were carried out in the College of Science and Engineering Characterization Facility, University of Minnesota, which has received capital equipment funding from the NSF through the UMN MRSEC programme under award no. DMR-2011401, and in the Minnesota Nano Center, which is supported by NSF through the National Nano Coordinated Infrastructure Network, under award no. ECCS-2025124. Parts of this work were also carried out at the Center for Nanosystems Chemistry at the Universität Würzburg, which has received funds from the Bavarian State Ministry of Science and Arts in the framework of the research programme ‘Solar Technologies Go Hybrid’ (F.W.). Some of the SKPM measurements were performed at Shandong University, supported by the National Natural Science Foundation of China grant no. 62074093 (T.H.). T.H. also acknowledges support from the Qilu Young Scholars Programme of Shandong University.

Author information

Authors and Affiliations

Authors

Contributions

C.D.F. designed and guided the research programme. T.H. grew single crystals, fabricated the devices and performed measurements and analysis. M.S., R.R. and F.W. synthesized the Cl2-NDI materials, performed UV-vis near infrared spectroelectrochemistry and contributed to the scientific discussion of the results. P.P.R. and Y.W. provided theoretical support and contributed to the interpretation of the results. T.H. and C.D.F. wrote the paper with input from all authors.

Corresponding authors

Correspondence to Tao He or C. Daniel Frisbie.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Sasha Sadewasser and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–31.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, T., Stolte, M., Wang, Y. et al. Site-specific chemical doping reveals electron atmospheres at the surfaces of organic semiconductor crystals. Nat. Mater. 20, 1532–1538 (2021). https://doi.org/10.1038/s41563-021-01079-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41563-021-01079-z

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing