Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures


Two-dimensional heterostructures are excellent platforms to realize twist-angle-independent ultra-low friction due to their weak interlayer van der Waals interactions and natural lattice mismatch. However, for finite-size interfaces, the effect of domain edges on the friction process remains unclear. Here we report the superlubricity phenomenon and the edge-pinning effect at MoS2/graphite and MoS2/hexagonal boron nitride van der Waals heterostructure interfaces. We found that the friction coefficients of these heterostructures are below 10−6. Molecular dynamics simulations corroborate the experiments, which highlights the contribution of edges and interface steps to friction forces. Our experiments and simulations provide more information on the sliding mechanism of finite low-dimensional structures, which is vital to understand the friction process of laminar solid lubricants.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Rent or buy this article

Prices vary by article type



Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Friction characterizations of 2D heterostructures.
Fig. 2: Superlubricity of MoS2/graphite and MoS2/h-BN heterostructure interfaces.
Fig. 3: Source of friction for three different heterostructure interfaces.
Fig. 4: MD simulation results of MoS2 flakes sliding on graphite.
Fig. 5: Effects of interface steps on friction force.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary information files. Source data are provided with this paper.


  1. Holmberg, K., Andersson, P. & Erdemir, A. Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012).

    Article  Google Scholar 

  2. Holmberg, K. & Erdemir, A. Influence of tribology on global energy consumption, costs and emissions. Friction 5, 263–284 (2017).

    Article  CAS  Google Scholar 

  3. Shinjo, K. & Hirano, M. Dynamics of friction—superlubric state. Surf. Sci. 283, 473–478 (1993).

    Article  CAS  Google Scholar 

  4. Geim, A. K. & Grigorieva, I. V. Van der Waals heterostructures. Nature 499, 419–425 (2013).

    Article  CAS  Google Scholar 

  5. Dienwiebel, M. et al. Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004).

    Article  Google Scholar 

  6. Zheng, Q. et al. Self-retracting motion of graphite microflakes. Phys. Rev. Lett. 100, 067205 (2008).

    Article  Google Scholar 

  7. Li, H. et al. Superlubricity between MoS2 monolayers. Adv. Mater. 29, 1701474 (2017).

    Article  Google Scholar 

  8. Filippov, A. E., Dienwiebel, M., Frenken, J. W., Klafter, J. & Urbakh, M. Torque and twist against superlubricity. Phys. Rev. Lett. 100, 046102 (2008).

    Article  Google Scholar 

  9. Ribeiro-Palau, R. et al. Twistable electronics with dynamically rotatable heterostructures. Science 361, 690–693 (2018).

    Article  CAS  Google Scholar 

  10. Song, Y. et al. Robust microscale superlubricity in graphite/hexagonal boron nitride layered heterojunctions. Nat. Mater. 17, 894–899 (2018).

    Article  CAS  Google Scholar 

  11. Wang, D. et al. Thermally induced graphene rotation on hexagonal boron nitride. Phys. Rev. Lett. 116, 126101 (2016).

    Article  Google Scholar 

  12. Leven, I., Krepel, D., Shemesh, O. & Hod, O. Robust superlubricity in graphene/h-BN heterojunctions. J. Phys. Chem. Lett. 4, 115–120 (2013).

    Article  CAS  Google Scholar 

  13. Mandelli, D., Leven, I., Hod, O. & Urbakh, M. Sliding friction of graphene/hexagonal–boron nitride heterojunctions: a route to robust superlubricity. Sci. Rep. 7, 10851 (2017).

    Article  CAS  Google Scholar 

  14. Yu, H. et al. Precisely aligned monolayer MoS2 epitaxially grown on h-BN basal plane. Small 13, 1603005 (2017).

    Article  Google Scholar 

  15. Du, L. J. et al. Modulating PL and electronic structures of MoS2/graphene heterostructures via interlayer twisting angle. Appl. Phys. Lett. 111, 26310 (2017).

    Article  Google Scholar 

  16. Yang, W. et al. Epitaxial growth of single-domain graphene on hexagonal boron nitride. Nat. Mater. 12, 792–797 (2013).

    Article  CAS  Google Scholar 

  17. Radisavljevic, B., Radenovic, A., Brivio, J., Giacometti, V. & Kis, A. Single-layer MoS2 transistors. Nat. Nanotechnol. 6, 147–150 (2011).

    Article  CAS  Google Scholar 

  18. Liao, M. et al. Twist angle-dependent conductivities across MoS2/graphene heterojunctions. Nat. Commun. 9, 4068 (2018).

    Article  Google Scholar 

  19. Müser, M. H. in Fundamentals of Friction and Wear on the Nanoscale (eds Gnecco, E. & Meyer, E.) 209–232 (Springer International, 2015).

  20. Li, B. et al. Probing van der Waals interactions at two-dimensional heterointerfaces. Nat. Nanotechnol. 14, 567–572 (2019).

    Article  CAS  Google Scholar 

  21. Martin, J. M., Donnet, C., Lemogne, T. & Epicier, T. Superlubricity of molybdenum-disulfide. Phys. Rev. B 48, 10583–10586 (1993).

    Article  CAS  Google Scholar 

  22. Berman, D., Deshmukh, S. A., Sankaranarayanan, S. K., Erdemir, A. & Sumant, A. V. Macroscale superlubricity enabled by graphene nanoscroll formation. Science 348, 1118–1122 (2015).

    Article  CAS  Google Scholar 

  23. Dietzel, D., Feldmann, M., Schwarz, U. D., Fuchs, H. & Schirmeisen, A. Scaling laws of structural lubricity. Phys. Rev. Lett. 111, 235502 (2013).

    Article  Google Scholar 

  24. de Wijn, A. S. (In)commensurability, scaling, and multiplicity of friction in nanocrystals and application to gold nanocrystals on graphite. Phys. Rev. B 86, 085429 (2012).

    Article  Google Scholar 

  25. Muser, M. H., Wenning, L. & Robbins, M. O. Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86, 1295–1298 (2001).

    Article  CAS  Google Scholar 

  26. Yankowitz, M. et al. Emergence of superlattice Dirac points in graphene on hexagonal boron nitride. Nat. Phys. 8, 382–386 (2012).

    Article  CAS  Google Scholar 

  27. Wang, E. et al. Gaps induced by inversion symmetry breaking and second-generation Dirac cones in graphene/hexagonal boron nitride. Nat. Phys. 12, 1111–1116 (2016).

    Article  CAS  Google Scholar 

  28. Gao, W. & Tkatchenko, A. Sliding mechanisms in multilayered hexagonal boron nitride and graphene: the effects of directionality, thickness, and sliding constraints. Phys. Rev. Lett. 114, 096101 (2015).

    Article  Google Scholar 

  29. Mandelli, D., Ouyang, W., Urbakh, M. & Hod, O. The princess and the nanoscale pea: long-range penetration of surface distortions into layered materials stacks. ACS Nano 13, 7603–7609 (2019).

    Article  CAS  Google Scholar 

  30. Ding, Z. W., Pei, Q. X., Jiang, J. W., Huang, W. X. & Zhang, Y. W. Interfacial thermal conductance in graphene/MoS2 heterostructures. Carbon 96, 888–896 (2016).

    Article  CAS  Google Scholar 

  31. Brenner, D. W. et al. A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J. Phys. Condens. Matter 14, 783–802 (2002).

    Article  CAS  Google Scholar 

  32. Silva, A., Claerbout, V. E. P., Polcar, T., Kramer, D. & Nicolini, P. Exploring the stability of twisted van der Waals heterostructures. ACS Appl. Mater. Inter. 12, 45214–45221 (2020).

    Article  CAS  Google Scholar 

  33. Chen, Z., Khajeh, A., Martini, A. & Kim, S. H. Chemical and physical origins of friction on surfaces with atomic steps. Sci. Adv. 5, eaaw0513 (2019).

    Article  CAS  Google Scholar 

  34. Sader, J. E., Chon, J. W. M. & Mulvaney, P. Calibration of rectangular atomic force microscope cantilevers. Rev. Sci. Instrum. 70, 3967–3969 (1999).

    Article  CAS  Google Scholar 

  35. Wagner, K., Cheng, P. & Vezenov, D. Noncontact method for calibration of lateral forces in scanning force microscopy. Langmuir 27, 4635–4644 (2011).

    Article  CAS  Google Scholar 

  36. Schonfeld, B., Huang, J. J. & Moss, S. C. Anisotropic mean-square displacements (MSD) in single-crystals of 2H-MoS2 and 3R-MoS2. Acta Crystallogr. B 39, 404–407 (1983).

    Article  Google Scholar 

  37. Zemann, J. Crystal structures. Vol. 1 by R. W. G. Wyckoff. Acta Crystallogr. 18, 139–139 (1965).

    Article  Google Scholar 

  38. Grazulis, S. et al. Crystallography Open Database (COD): an open-access collection of crystal structures and platform for world-wide collaboration. Nucleic Acids Res. 40, D420–D427 (2012).

    Article  CAS  Google Scholar 

  39. Nose, S. A unified formulation of the constant temperature molecular-dynamics methods. J. Chem. Phys. 81, 511–519 (1984).

    Article  CAS  Google Scholar 

  40. Hoover, W. G. Canonical dynamics—equilibrium phase-space distributions. Phys. Rev. A 31, 1695–1697 (1985).

    Article  CAS  Google Scholar 

  41. Plimpton, S. Fast parallel algorithms for short-range molecular-dynamics. J. Comput. Phys. 117, 1–19 (1995).

    Article  CAS  Google Scholar 

  42. Humphrey, W., Dalke, A. & Schulten, K. VMD: visual molecular dynamics. J. Mol. Graph. 14, 33–38 (1996).

    Article  CAS  Google Scholar 

Download references


We are grateful to B. J. Irving for carefully reading the manuscript. G.Z. thanks the National Science Foundation of China (NSFC, grant nos 11834017 and 61888102) and the Strategic Priority Research Program of CAS (grant no. XDB30000000) for their support. M.L. thanks the ESI Fund and the OPR DE International Mobility of Researchers MSCA-IF III at CTU in Prague (no. CZ.02.2.69/0.0/0.0/20_079/0017983) for their support. L.D. gratefully acknowledges the financial support from the Academy of Finland (grant no. 3333099). D.S. thanks the support from NSFC (grant no. 61734001). K.W. and T.T. acknowledge support from the Elemental Strategy Initiative conducted by the MEXT, Japan, A3 Foresight by JSPS and the CREST (JPMJCR15F3), JST. M.L., P.N. and T.P. acknowledge support from the project Novel Nanostructures for Engineering Applications CZ.02.1.01/0.0/0.0/16_026/0008396. This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic through the e-INFRA CZ (ID:90140). T.P., V.E.P.C. and A.S. acknowledge support from the European Union’s Horizon 2020 research and innovation program under grant agreement no. 721642: SOLUTION. The data and materials are available from the corresponding authors upon request. The authors acknowledge the use of the IRIDIS High Performance Computing Facility, and associated support services at the University of Southampton, in the completion of this work.

Author information

Authors and Affiliations



G.Z. supervised the research. M.L. performed the AFM measurements and data analysis. L.D., J.Y., S.W. and H.Y. performed the sample growth, TEM and spectroscopic characterizations. J.T. and L.G. performed TEM measurements. P.C. assisted with the AFM cantilever calibration methods. K.W. and T.T. offered BN flakes. P.N., V.E.P.C. and A.S. performed the simulations. M.L. and P.N. wrote the manuscript. T.P. and D.K. revised the manuscript. R.Y. and D.S. helped in the lab management. All the authors commented on the manuscript.

Corresponding author

Correspondence to Guangyu Zhang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks the anonymous reviewers for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Notes 1–10 and Figs. 1–13.

Supplementary Video 1

Video of a MoS2 flake across the graphite step.

Supplementary Video 2

A simulation video of a MoS2 flake across the graphite step.

Source data

Source Data Fig. 1

Raw data for Fig. 1h–i.

Source Data Fig. 2

Raw data for Fig. 2a–c.

Source Data Fig. 3

Raw data for Fig. 3a–f.

Source Data Fig. 4

Raw data for Fig. 4c–f.

Source Data Fig. 5

Raw data for Fig. 5a,c.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liao, M., Nicolini, P., Du, L. et al. UItra-low friction and edge-pinning effect in large-lattice-mismatch van der Waals heterostructures. Nat. Mater. 21, 47–53 (2022).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing