Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Hydrophilicity gradient in covalent organic frameworks for membrane distillation


Desalination can help to alleviate the fresh-water crisis facing the world. Thermally driven membrane distillation is a promising way to purify water from a variety of saline and polluted sources by utilizing low-grade heat. However, membrane distillation membranes suffer from limited permeance and wetting owing to the lack of precise structural control. Here, we report a strategy to fabricate membrane distillation membranes composed of vertically aligned channels with a hydrophilicity gradient by engineering defects in covalent organic framework films by the removal of imine bonds. Such functional variation in individual channels enables a selective water transport pathway and a precise liquid–vapour phase change interface. In addition to having anti-fouling and anti-wetting capability, the covalent organic framework membrane on a supporting layer shows a flux of 600 l m–2 h–1 with 85 °C feed at 16 kPa absolute pressure, which is nearly triple that of the state-of-the-art membrane distillation membrane for desalination. Our results may promote the development of gradient membranes for molecular sieving.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Fig. 1: Schematic illustration of the defect-engineered COF film.
Fig. 2: Structure characterization of COFDT film.
Fig. 3: Structure characterization of COFDT-Ex film.
Fig. 4: Desalination performance.
Fig. 5: Molecular dynamics simulations.

Data availability

The authors declare that the data supporting the findings of this study are available within the paper and its Supplementary Information files. Source data are provided with this paper. Additional data is available from the authors upon request.


  1. 1.

    Elimelech, M. & Phillip, W. A. The future of seawater desalination: energy, technology, and the environment. Science 333, 712–717 (2011).

    CAS  Article  Google Scholar 

  2. 2.

    Shannon, M. A. et al. Science and technology for water purification in the coming decades. Nature 452, 301–310 (2008).

    CAS  Article  Google Scholar 

  3. 3.

    Deshmukh, A. et al. Membrane distillation at the water-energy nexus: limits, opportunities, and challenges. Energ. Environ. Sci. 11, 1177–1196 (2018).

    CAS  Article  Google Scholar 

  4. 4.

    Alkhudhiri, A., Darwish, N. & Hilal, N. Membrane distillation: a comprehensive review. Desalination 287, 2–18 (2012).

    CAS  Article  Google Scholar 

  5. 5.

    Wang, P. & Chung, T. S. Recent advances in membrane distillation processes: membrane development, configuration design and application exploring. J. Membr. Sci. 474, 39–56 (2015).

    CAS  Article  Google Scholar 

  6. 6.

    Ali, A. et al. Membrane technology in renewable-energy-driven desalination. Renew. Sust. Energ. Rev. 81, 1–21 (2018).

    CAS  Article  Google Scholar 

  7. 7.

    Drioli, E., Ali, A. & Macedonio, F. Membrane distillation: recent developments and perspectives. Desalination 356, 56–84 (2015).

    CAS  Article  Google Scholar 

  8. 8.

    González, D., Amigo, J. & Suárez, F. Membrane distillation: perspectives for sustainable and improved desalination. Renew. Sust. Energ. Rev. 80, 238–259 (2017).

    Article  Google Scholar 

  9. 9.

    Camacho, L. et al. Advances in membrane distillation for water desalination and purification applications. Water 5, 194–196 (2013).

    Article  Google Scholar 

  10. 10.

    Rezaei, M. et al. Wetting phenomena in membrane distillation: mechanisms, reversal, and prevention. Water Res. 139, 329–352 (2018).

    CAS  Article  Google Scholar 

  11. 11.

    Chen, W. et al. High-flux water desalination with interfacial salt sieving effect in nanoporous carbon composite membranes. Nat. Nanotechnol. 13, 345–350 (2018).

    CAS  Article  Google Scholar 

  12. 12.

    Liao, Y., Wang, R. & Fane, A. G. Fabrication of bioinspired composite nanofiber membranes with robust superhydrophobicity for direct contact membrane distillation. Environ. Sci. Technol. 48, 6335–6341 (2014).

    CAS  Article  Google Scholar 

  13. 13.

    Hou, D. et al. Composite membrane with electrospun multiscale-textured surface for robust oil-fouling resistance in membrane distillation. J. Membr. Sci. 546, 179–187 (2018).

    CAS  Article  Google Scholar 

  14. 14.

    Tang, N. et al. Preparation and morphological characterization of narrow pore size distributed polypropylene hydrophobic membranes for vacuum membrane distillation via thermally induced phase separation. Desalination 256, 27–36 (2010).

    CAS  Article  Google Scholar 

  15. 15.

    Huang, Q.-L. et al. Electrospun ultrafine fibrous PTFE-supported ZnO porous membrane with self-cleaning function for vacuum membrane distillation. J. Membr. Sci. 534, 73–82 (2017).

    Article  CAS  Google Scholar 

  16. 16.

    Wang, W. et al. Trade-off in membrane distillation with monolithic omniphobic membranes. Nat. Commun. 10, 3220 (2019).

    Article  CAS  Google Scholar 

  17. 17.

    Cote, A. P. et al. Porous, crystalline, covalent organic frameworks. Science 310, 1166–1170 (2005).

    CAS  Article  Google Scholar 

  18. 18.

    Diercks, C. S. & Yaghi, O. M. The atom, the molecule, and the covalent organic framework. Science 355, eaal1585 (2017).

    Article  CAS  Google Scholar 

  19. 19.

    Huang, N., Wang, P. & Jiang, D. Covalent organic frameworks: a materials platform for structural and functional designs. Nat. Rev. Mater. 1, 16068 (2016).

    CAS  Article  Google Scholar 

  20. 20.

    Jin, Y., Hu, Y. & Zhang, W. Tessellated multiporous two-dimensional covalent organic frameworks. Nat. Rev. Chem. 1, 0056 (2017).

    Article  CAS  Google Scholar 

  21. 21.

    Ding, S. Y. & Wang, W. Covalent organic frameworks (COFs): from design to applications. Chem. Soc. Rev. 42, 548–568 (2013).

    CAS  Article  Google Scholar 

  22. 22.

    Yuan, J. et al. Covalent organic framework-modulated interfacial polymerization for ultrathin desalination membranes. J. Mater. Chem. A 7, 25641–25649 (2019).

    CAS  Article  Google Scholar 

  23. 23.

    Xu, L., Shan, B., Gao, C. & Xu, J. Multifunctional thin-film nanocomposite membranes comprising covalent organic nanosheets with high crystallinity for efficient reverse osmosis desalination. J. Membr. Sci. 593, 117398 (2020).

    Article  CAS  Google Scholar 

  24. 24.

    Matsumoto, M. et al. Lewis-acid-catalyzed interfacial polymerization of covalent organic framework films. Chem 4, 308–317 (2018).

    CAS  Article  Google Scholar 

  25. 25.

    Shinde, D. B. et al. Crystalline 2D covalent organic framework membranes for high-flux organic solvent nanofiltration. J. Am. Chem. Soc. 140, 14342–14349 (2018).

    CAS  Article  Google Scholar 

  26. 26.

    Colson, J. W. et al. Oriented 2D covalent organic framework thin films on single-layer graphene. Science 332, 228–231 (2011).

    CAS  Article  Google Scholar 

  27. 27.

    Sick, T. et al. Oriented films of conjugated 2D covalent organic frameworks as photocathodes for water splitting. J. Am. Chem. Soc. 140, 2085–2092 (2018).

    CAS  Article  Google Scholar 

  28. 28.

    Zhou, D. et al. Synthesis of C–C bonded two-dimensional conjugated covalent organic framework films by Suzuki polymerization on a liquid–liquid interface. Angew. Chem. Int. Ed. 58, 1376–1381 (2019).

    CAS  Article  Google Scholar 

  29. 29.

    Fan, J., W., H. & Wang, F. Evaporation-driven liquid flow through nanochannels. Phys. Fluids 32, 012001 (2020).

    CAS  Article  Google Scholar 

  30. 30.

    Feng, S. & Xu, Z. Edges facilitate water evaporation through nanoporous graphene. Nanotechnology 30, 165401 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Li, Y. et al. Ultrafast diameter-dependent water evaporation from nanopores. ACS Nano 13, 3363–3372 (2019).

    CAS  Article  Google Scholar 

  32. 32.

    Lu, K. J., Chen, Y. & Chung, T. S. Design of omniphobic interfaces for membrane distillation – a review. Water Res. 162, 64–77 (2019).

    CAS  Article  Google Scholar 

  33. 33.

    Huang, Y. X., Wang, Z., Jin, J. & Lin, S. Novel Janus membrane for membrane distillation with simultaneous fouling and wetting resistance. Environ. Sci. Technol. 51, 13304–13310 (2017).

    CAS  Article  Google Scholar 

  34. 34.

    Zuo, G. & Wang, R. Novel membrane surface modification to enhance anti-oil fouling property for membrane distillation application. J. Membr. Sci. 447, 26–35 (2013).

    CAS  Article  Google Scholar 

  35. 35.

    AbdulHalim, R. G. et al. A fine-tuned metal–organic framework for autonomous indoor moisture control. J. Am. Chem. Soc. 139, 10715–10722 (2017).

    CAS  Article  Google Scholar 

  36. 36.

    Kandambeth, S. et al. Self-templated chemically stable hollow spherical covalent organic framework. Nat. Commun. 6, 6786 (2015).

    CAS  Article  Google Scholar 

  37. 37.

    Halder, A. et al. Ultrastable imine-based covalent organic frameworks for sulfuric acid recovery: an effect of interlayer hydrogen bonding. Angew. Chem. Int. Ed. 57, 5797–5802 (2018).

    CAS  Article  Google Scholar 

  38. 38.

    Wang, W. et al. Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation. Nat. Commun. 10, 3012 (2019).

    Article  CAS  Google Scholar 

  39. 39.

    Xue, Y. L. et al. Tailoring the molecular structure of crosslinked polymers for pervaporation desalination. Nat. Commun. 11, 1461 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Lee, J., Laoui, T. & Karnik, R. Nanofluidic transport governed by the liquid/vapour interface. Nat. Nanotechnol. 9, 317–323 (2014).

    CAS  Article  Google Scholar 

  41. 41.

    Wang, Z., Jin, J., Hou, D. & Lin, S. Tailoring surface charge and wetting property for robust oil-fouling mitigation in membrane distillation. J. Membr. Sci. 516, 113–122 (2016).

    CAS  Article  Google Scholar 

  42. 42.

    She, Q., Wang, R., Fane, A. G. & Tang, C. Y. Membrane fouling in osmotically driven membrane processes: a review. J. Membr. Sci. 499, 201–233 (2016).

    CAS  Article  Google Scholar 

  43. 43.

    Wang, Z., Hou, D. & Lin, S. Composite membrane with underwater-oleophobic surface for anti-oil-fouling membrane distillation. Environ. Sci. Technol. 50, 3866–3874 (2016).

    CAS  Article  Google Scholar 

Download references


This research was supported by the analysis and testing centre of the Beijing Institute of Technology for basic characterization. We acknowledge D. Lu and J. Li from Tsinghua University for their suggestions on mechanism discussion. C.J. appreciates the help from M. Wu. B.W. acknowledges financially support from the National Natural Science Foundation of China (grant nos 21625102 and 21971017), National Key Research and Development Program of China (2020YFB1506300), Beijing Municipal Science and Technology Project (Z181100004418001) and Beijing Institute of Technology Research Fund Program. X.F. acknowledges support from the National Natural Science Foundation of China (grant nos 21922502 and 21674012). R.Y. acknowledges support from the 1331 Project of Shanxi Province. F.W. acknowledges support from the Strategic Priority Research Program of the Chinese Academy of Sciences (XDB22040402) and the CAS Youth Innovation Promotion Association.

Author information




X.F. and B.W. conceived the research and supervised the project. S. Zhao and C.J. developed the COF films synthesis, conducted the experiments, designed measurement devices and analysed the experimental results. J.F., F.W. and H.W. performed the theoretical calculations. S.H., Y.L., H.L., H.Z. and S. Zhang performed part of the MD performance test. R.Y., L.G., Y.M., Jianqi Zhang and Jinwei Zhang performed part of the structural characterization of the films. P.M., P.S., C.S., Z.G. and Y.Z. conducted part of the synthesis of the film and simulated the structure of the COF film. S. Zhao, C.J., X.F. and B.W. wrote the manuscript. All authors discussed and commented on the manuscript.

Corresponding authors

Correspondence to Xiao Feng or Fengchao Wang or Bo Wang.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks Zhiping Lai, Huanting Wang and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Figs. 1–35, Tables 1–8, refs. 1–24, Materials and Methods.

Supplementary Video 1

The process of transferring COFDT and COFDT-E18 films onto a cPVDF membrane.

Source data

Source Data Fig. 2

Powder X-ray diffraction source data for COFDT film.

Source Data Fig. 3

NMR, water adsorption and XPS source data for COFDT-E18 film.

Source Data Fig. 4

MD performance source data for COFDT-E18 film.

Source Data Fig. 5

Molecular dynamics simulations source data.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhao, S., Jiang, C., Fan, J. et al. Hydrophilicity gradient in covalent organic frameworks for membrane distillation. Nat. Mater. (2021).

Download citation


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing