Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Perovskite semiconductors for room-temperature exciton-polaritonics

Abstract

Lead-halide perovskites are generally excellent light emitters and can have larger exciton binding energies than thermal energy at room temperature, exhibiting great promise for room-temperature exciton-polaritonics. Rapid progress has been made recently, although challenges and mysteries remain in lead-halide perovskite semiconductors to push polaritons to room-temperature operation. In this Perspective, we discuss fundamental aspects of perovskite semiconductors for exciton-polaritons and review the recent rapid experimental advances using lead-halide perovskites for room-temperature polaritonics, including the experimental realization of strong light–matter interaction using various types of microcavities as well as reaching the polariton condensation regime in planar microcavities and lattices.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1: Morphology and optical properties of lead-halide perovskites.
Fig. 2: Exciton-polaritons in perovskite photonic structures.
Fig. 3: Exciton-polariton condensates in lead-halide perovskite microcavities.

References

  1. 1.

    Deng, H., Haug, H. & Yamamoto, Y. Exciton-polariton Bose-Einstein condensation. Rev. Mod. Phys. 82, 1489–1537 (2010).

    CAS  Article  Google Scholar 

  2. 2.

    Sanvitto, D. & Kéna-Cohen, S. The road towards polaritonic devices. Nat. Mater. 15, 1061–1073 (2016).

    CAS  Article  Google Scholar 

  3. 3.

    Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443, 409–414 (2006).

    CAS  Article  Google Scholar 

  4. 4.

    Amo, A. et al. Superfluidity of polaritons in semiconductor microcavities. Nat. Phys. 5, 805–810 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    Lerario, G. et al. Room-temperature superfluidity in a polariton condensate. Nat. Phys. 13, 837–841 (2017).

    CAS  Article  Google Scholar 

  6. 6.

    Lagoudakis, K. G. et al. Quantized vortices in an exciton–polariton condensate. Nat. Phys. 4, 706–710 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Deng, H., Weihs, G., Snoke, D., Bloch, J. & Yamamoto, Y. Polariton lasing vs. photon lasing in a semiconductor microcavity. Proc. Natl Acad. Sci. USA 100, 15318–15323 (2003).

    CAS  Article  Google Scholar 

  8. 8.

    Schneider, C. et al. An electrically pumped polariton laser. Nature 497, 348–352 (2013).

    CAS  Article  Google Scholar 

  9. 9.

    Ballarini, D. et al. All-optical polariton transistor. Nat. Commun. 4, 1778 (2013).

    CAS  Article  Google Scholar 

  10. 10.

    Zasedatelev, A. V. et al. A room-temperature organic polariton transistor. Nat. Photon. 13, 378–383 (2019).

    CAS  Article  Google Scholar 

  11. 11.

    Ballarini, D. et al. Polaritonic neuromorphic computing outperforms linear classifiers. Nano Lett. 20, 3506–3512 (2020).

    CAS  Article  Google Scholar 

  12. 12.

    Christopoulos, S. et al. Room-temperature polariton lasing in semiconductor microcavities. Phys. Rev. Lett. 98, 126405 (2007).

    CAS  Article  Google Scholar 

  13. 13.

    Christmann, G., Butté, R., Feltin, E., Carlin, J.-F. & Grandjean, N. Room temperature polariton lasing in a GaN/AlGaN multiple quantum well microcavity. Appl. Phys. Lett. 93, 051102 (2008).

    Article  CAS  Google Scholar 

  14. 14.

    Trichet, A., Médard, F., Zúñiga-Pérez, J., Alloing, B. & Richard, M. From strong to weak coupling regime in a single GaN microwire up to room temperature. New J. Phys. 14, 073004 (2012).

    Article  CAS  Google Scholar 

  15. 15.

    Lu, T.-C. et al. Room temperature polariton lasing vs. photon lasing in a ZnO-based hybrid microcavity. Opt. Express 20, 5530–5537 (2012).

    CAS  Article  Google Scholar 

  16. 16.

    Zhang, L. et al. Weak lasing in one-dimensional polariton superlattices. Proc. Natl Acad. Sci. USA 112, E1516–E1519 (2015).

    CAS  Article  Google Scholar 

  17. 17.

    Lidzey, D. G. et al. Strong exciton–photon coupling in an organic semiconductor microcavity. Nature 395, 53–55 (1998).

    CAS  Article  Google Scholar 

  18. 18.

    Kéna-Cohen, S. & Forrest, S. Room-temperature polariton lasing in an organic single-crystal microcavity. Nat. Photon. 4, 371–375 (2010).

    Article  CAS  Google Scholar 

  19. 19.

    Daskalakis, K., Maier, S., Murray, R. & Kéna-Cohen, S. Nonlinear interactions in an organic polariton condensate. Nat. Mater. 13, 271–278 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    Plumhof, J. D., Stöferle, T., Mai, L., Scherf, U. & Mahrt, R. F. Room-temperature Bose–Einstein condensation of cavity exciton–polaritons in a polymer. Nat. Mater. 13, 247–252 (2014).

    CAS  Article  Google Scholar 

  21. 21.

    Liu, X. Z. et al. Strong light–matter coupling in two-dimensional atomic crystals. Nat. Photon. 9, 30–34 (2015).

    CAS  Article  Google Scholar 

  22. 22.

    Zhao, L. et al. Strong exciton–photon interaction and lasing of two-dimensional transition metal dichalcogenide semiconductors. Nano Res. 14, 1937–1954 (2020).

    Article  CAS  Google Scholar 

  23. 23.

    Barachati, F. et al. Interacting polariton fluids in a monolayer of tungsten disulfide. Nat. Nanotechnol. 13, 906–909 (2018).

    CAS  Article  Google Scholar 

  24. 24.

    Tan, L. B. et al. Interacting polaron-polaritons. Phys. Rev. X 10, 021011 (2020).

    CAS  Google Scholar 

  25. 25.

    Emmanuele, R. P. A. et al. Highly nonlinear trion-polaritons in a monolayer semiconductor. Nat. Commun. 11, 3589 (2020).

    CAS  Article  Google Scholar 

  26. 26.

    Zhang, Q. et al. High-quality whispering-gallery-mode lasing from cesium lead halide perovskite nanoplatelets. Adv. Funct. Mater. 26, 6238–6245 (2016).

    CAS  Article  Google Scholar 

  27. 27.

    Blancon, J.-C. et al. Extremely efficient internal exciton dissociation through edge states in layered 2D perovskites. Science 355, 1288–1292 (2017).

    CAS  Article  Google Scholar 

  28. 28.

    Blancon, J.-C. et al. Scaling law for excitons in 2D perovskite quantum wells. Nat. Commun. 9, 2254 (2018).

    Article  CAS  Google Scholar 

  29. 29.

    Fieramosca, A. et al. Tunable out-of-plane excitons in 2D single-crystal perovskites. ACS Photon. 5, 4179–4185 (2018).

    CAS  Article  Google Scholar 

  30. 30.

    Fu, Y. et al. Metal halide perovskite nanostructures for optoelectronic applications and the study of physical properties. Nat. Rev. Mater. 4, 169–188 (2019).

    CAS  Article  Google Scholar 

  31. 31.

    Akkerman, Q. A. et al. Solution synthesis approach to colloidal cesium lead halide perovskite nanoplatelets with monolayer-level thickness control. J. Am. Chem. Soc. 138, 1010–1016 (2016).

    CAS  Article  Google Scholar 

  32. 32.

    Shamsi, J. et al. Colloidal synthesis of quantum confined single crystal CsPbBr3 nanosheets with lateral size control up to the micrometer range. J. Am. Chem. Soc. 138, 7240–7243 (2016).

    CAS  Article  Google Scholar 

  33. 33.

    Lei, Y. et al. A fabrication process for flexible single-crystal perovskite devices. Nature 583, 790–795 (2020).

    CAS  Article  Google Scholar 

  34. 34.

    Niu, W., Eiden, A., Prakash, G. V. & Baumberg, J. J. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104, 171111 (2014).

    Article  CAS  Google Scholar 

  35. 35.

    Ha, S. T. et al. Synthesis of organic–inorganic lead halide perovskite nanoplatelets: towards high-performance perovskite solar cells and optoelectronic devices. Adv. Opt. Mater. 2, 838–844 (2014).

    CAS  Article  Google Scholar 

  36. 36.

    Li, J. et al. 2D behaviors of excitons in cesium lead halide perovskite nanoplatelets. J. Phys. Chem. Lett. 8, 1161–1168 (2017).

    CAS  Article  Google Scholar 

  37. 37.

    Su, R. et al. Room-temperature polariton lasing in all-inorganic perovskite nanoplatelets. Nano Lett. 17, 3982–3988 (2017).

    CAS  Article  Google Scholar 

  38. 38.

    Su, R. et al. Room temperature long-range coherent exciton polariton condensate flow in lead halide perovskites. Sci. Adv. 4, eaau0244 (2018).

    CAS  Article  Google Scholar 

  39. 39.

    Su, R. et al. Observation of exciton polariton condensation in a perovskite lattice at room temperature. Nat. Phys. 16, 301–306 (2020).

    CAS  Article  Google Scholar 

  40. 40.

    Fieramosca, A. et al. Two-dimensional hybrid perovskites sustaining strong polariton interactions at room temperature. Sci. Adv. 5, eaav9967 (2019).

    CAS  Article  Google Scholar 

  41. 41.

    Liu, S. et al. Manipulating efficient light emission in two-dimensional perovskite crystals by pressure-induced anisotropic deformation. Sci. Adv. 5, eaav9445 (2019).

    CAS  Article  Google Scholar 

  42. 42.

    Cheng, B. et al. Extremely reduced dielectric confinement in two-dimensional hybrid perovskites with large polar organics. Commun. Phys. 1, 80 (2018).

    Article  CAS  Google Scholar 

  43. 43.

    Fujita, T., Sato, Y., Kuitani, T. & Ishihara, T. Tunable polariton absorption of distributed feedback microcavities at room temperature. Phys. Rev. B 57, 12428–12434 (1998).

    CAS  Article  Google Scholar 

  44. 44.

    Lanty, G., Brehier, A., Parashkov, R., Lauret, J.-S. & Deleporte, E. Strong exciton–photon coupling at room temperature in microcavities containing two-dimensional layered perovskite compounds. New J. Phys. 10, 065007 (2008).

    Article  CAS  Google Scholar 

  45. 45.

    Brehier, A., Parashkov, R., Lauret, J. S. & Deleporte, E. Strong exciton-photon coupling in a microcavity containing layered perovskite semiconductors. Appl. Phys. Lett. 89, 171110 (2006).

    Article  CAS  Google Scholar 

  46. 46.

    Han, Z. et al. High-Q planar organic–inorganic perovskite-based microcavity. Opt. Lett. 37, 5061–5063 (2012).

    CAS  Article  Google Scholar 

  47. 47.

    Nguyen, H. S. et al. Quantum confinement of zero-dimensional hybrid organic-inorganic polaritons at room temperature. Appl. Phys. Lett. 104, 081103 (2014).

    Article  CAS  Google Scholar 

  48. 48.

    Wang, J. et al. Room temperature coherently coupled exciton–polaritons in two-dimensional organic–inorganic perovskite. ACS Nano 12, 8382–8389 (2018).

    CAS  Article  Google Scholar 

  49. 49.

    Agranovich, V., Benisty, H. & Weisbuch, C. Organic and inorganic quantum wells in a microcavity: Frenkel-Wannier-Mott excitons hybridization and energy transformation. Solid State Commun. 102, 631–636 (1997).

    CAS  Article  Google Scholar 

  50. 50.

    Wenus, J. et al. Hybrid organic-inorganic exciton-polaritons in a strongly coupled microcavity. Phys. Rev. B 74, 235212 (2006).

    Article  CAS  Google Scholar 

  51. 51.

    Lanty, G. et al. Hybrid cavity polaritons in a ZnO-perovskite microcavity. Phys. Rev. B 84, 195449 (2011).

    Article  CAS  Google Scholar 

  52. 52.

    Dang, N. H. M. et al. Tailoring dispersion of room-temperature exciton-polaritons with perovskite-based subwavelength metasurfaces. Nano Lett. 20, 2113–2119 (2020).

    CAS  Article  Google Scholar 

  53. 53.

    Bouteyre, P. et al. Room-temperature cavity polaritons with 3D hybrid perovskite: toward large-surface polaritonic devices. ACS Photon. 6, 1804–1811 (2019).

    CAS  Article  Google Scholar 

  54. 54.

    Park, K. et al. Light–matter interactions in cesium lead halide perovskite nanowire lasers. J. Phys. Chem. Lett. 7, 3703–3710 (2016).

    Article  CAS  Google Scholar 

  55. 55.

    Evans, T. J. S. et al. Continuous-wave lasing in cesium lead bromide perovskite nanowires. Adv. Opt. Mater. 6, 1700982 (2018).

    Article  CAS  Google Scholar 

  56. 56.

    Zhang, S. et al. Strong exciton–photon coupling in hybrid inorganic–organic perovskite micro/nanowires. Adv. Opt. Mater. 6, 1701032 (2018).

    Article  CAS  Google Scholar 

  57. 57.

    Symonds, C. et al. Emission of hybrid organic-inorganic exciton/plasmon mixed states. Appl. Phys. Lett. 90, 091107 (2007).

    Article  CAS  Google Scholar 

  58. 58.

    Niu, W. et al. Image excitons and plasmon-exciton strong coupling in two-dimensional perovskite semiconductors. Phys. Rev. B 91, 161303 (2015).

    Article  CAS  Google Scholar 

  59. 59.

    Shang, Q. et al. Surface plasmon enhanced strong exciton–photon coupling in hybrid inorganic–organic perovskite nanowires. Nano Lett. 18, 3335–3343 (2018).

    CAS  Article  Google Scholar 

  60. 60.

    Wang, J. et al. Spontaneously coherent orbital coupling of counterrotating exciton polaritons in annular perovskite microcavities. Light. Sci. Appl. 10, 45 (2021).

    CAS  Article  Google Scholar 

  61. 61.

    Wu, K. et al. Ultrafast interfacial electron and hole transfer from CsPbBr3 perovskite quantum dots. J. Am. Chem. Soc. 137, 12792–12795 (2015).

    CAS  Article  Google Scholar 

  62. 62.

    Chong, W. K. et al. Dominant factors limiting the optical gain in layered two-dimensional halide perovskite thin films. Phys. Chem. Chem. Phys. 18, 14701–14708 (2016).

    CAS  Article  Google Scholar 

  63. 63.

    Polimeno, L. et al. Observation of two thresholds leading to polariton condensation in 2D hybrid perovskites. Adv. Opt. Mater. 8, 2000176 (2020).

    CAS  Article  Google Scholar 

  64. 64.

    Lai, C. et al. Coherent zero-state and π-state in an exciton–polariton condensate array. Nature 450, 529–533 (2007).

    CAS  Article  Google Scholar 

  65. 65.

    Cerda-Méndez, E. et al. Polariton condensation in dynamic acoustic lattices. Phys. Rev. Lett. 105, 116402 (2010).

    Article  CAS  Google Scholar 

  66. 66.

    Jacqmin, T. et al. Direct observation of Dirac cones and a flatband in a honeycomb lattice for polaritons. Phys. Rev. Lett. 112, 116402 (2014).

    CAS  Article  Google Scholar 

  67. 67.

    Berloff, N. G. et al. Realizing the classical XY Hamiltonian in polariton simulators. Nat. Mater. 16, 1120–1126 (2017).

    CAS  Article  Google Scholar 

  68. 68.

    Grancini, G. & Nazeeruddin, M. K. Dimensional tailoring of hybrid perovskites for photovoltaics. Nat. Rev. Mater. 4, 4–22 (2019).

    CAS  Article  Google Scholar 

  69. 69.

    Yu, H. et al. Waterproof cesium lead bromide perovskite lasers and their applications in solution. ACS Nano 14, 552–558 (2020).

    CAS  Article  Google Scholar 

  70. 70.

    Zheng, H. et al. The effect of hydrophobicity of ammonium salts on stability of quasi-2D perovskite materials in moist condition. Adv. Energy Mater. 8, 1800051 (2018).

    Article  CAS  Google Scholar 

  71. 71.

    Qin, C. et al. Stable room-temperature continuous-wave lasing in quasi-2D perovskite films. Nature 585, 53–57 (2020).

    CAS  Article  Google Scholar 

  72. 72.

    Delteil, A. et al. Towards polariton blockade of confined exciton–polaritons. Nat. Mater. 18, 219–222 (2019).

    CAS  Article  Google Scholar 

  73. 73.

    Muñoz-Matutano, G. et al. Emergence of quantum correlations from interacting fibre-cavity polaritons. Nat. Mater. 18, 213–218 (2019).

    Article  CAS  Google Scholar 

  74. 74.

    Togan, E., Lim, H.-T., Faelt, S., Wegscheider, W. & Imamoglu, A. Enhanced interactions between dipolar polaritons. Phys. Rev. Lett. 121, 227402 (2018).

    CAS  Article  Google Scholar 

  75. 75.

    Bao, W. et al. Observation of Rydberg exciton polaritons and their condensate in a perovskite cavity. Proc. Natl Acad. Sci USA 116, 20274–20279 (2019).

    CAS  Article  Google Scholar 

  76. 76.

    Lin, K. et al. Perovskite light-emitting diodes with external quantum efficiency exceeding 20 per cent. Nature 562, 245–248 (2018).

    CAS  Article  Google Scholar 

  77. 77.

    Shang, Q. et al. Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser. Nano Lett. 20, 6636–6643 (2020).

    CAS  Article  Google Scholar 

  78. 78.

    Jiang, Y. et al. Reducing the impact of Auger recombination in quasi-2D perovskite light-emitting diodes. Nat. Commun. 12, 336 (2021).

    CAS  Article  Google Scholar 

  79. 79.

    St-Jean, P. et al. Lasing in topological edge states of a one-dimensional lattice. Nat. Photon. 11, 651–656 (2017).

    CAS  Article  Google Scholar 

  80. 80.

    Baboux, F. et al. Bosonic condensation and disorder-induced localization in a flat band. Phys. Rev. Lett. 116, 066402 (2016).

    CAS  Article  Google Scholar 

  81. 81.

    Fieramosca, A. et al. Chromodynamics of photons in an artificial non-Abelian magnetic Yang-Mills field. Preprint at https://arxiv.org/abs/1912.09684 (2019).

  82. 82.

    Polimeno, L. et al. Tuning the Berry curvature in 2D perovskite. Preprint at https://arxiv.org/abs/2007.14945 (2020).

  83. 83.

    Su, R., Ghosh, S., Liew, T. C. H. & Xiong, Q. Optical switching of topological phase in a perovskite polariton lattice. Sci. Adv. 7, eabf8049 (2021).

    Article  Google Scholar 

  84. 84.

    Klembt, S. et al. Exciton-polariton topological insulator. Nature 562, 552–556 (2018).

    CAS  Article  Google Scholar 

  85. 85.

    Hu, J. et al. Polariton laser in the Bardeen-Cooper-Schrieffer regime. Phys. Rev. X 11, 011018 (2021).

    CAS  Google Scholar 

Download references

Acknowledgements

Q.X. gratefully acknowledges the funding support from National Natural Science Foundation of China (no. 12020101003) and a Tsinghua University start-up grant. T.C.H.L. gratefully acknowledges the Singapore Ministry of Education via the AcRF Tier 3 programme ‘Geometrical Quantum Materials’ (MOE2018-T3-1-002) and Tier 2 grants (MOE2019-T2-1-004 and MOE2018-T2-2-068). E.D. and H.S.N. acknowledge financial support from Agence Nationale de la Recherche, programmes ANR-18-CE24-0016 (EMIPERO) and ANR-17-CE24-0020 (POPEYE). H.S.N. is a junior member of the Institut Universitaire de France and acknowledges the IDEXLYON from Université de Lyon, Scientific Breakthrough project TORE within the Programme Investissements d’Avenir (ANR-19-IDEX-0005). Q.Z. gratefully acknowledges the funding support from National Natural Science Foundation of China (no. 52072006). D.S. gratefully acknowledges the project PRIN Interacting Photons in Polariton Circuits—INPhoPOL (MIUR, 2017P9FJBS_001) “Accordo bilaterale CNR/RFBR (Russia) - triennio 2021–2023”.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Daniele Sanvitto or Qihua Xiong.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information Nature Materials thanks X.-Y. Zhu and the other, anonymous, reviewer(s) for their contribution to the peer review of this work.

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Su, R., Fieramosca, A., Zhang, Q. et al. Perovskite semiconductors for room-temperature exciton-polaritonics. Nat. Mater. (2021). https://doi.org/10.1038/s41563-021-01035-x

Download citation

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing